AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support

Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE
Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE
Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Abstract

Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM1 = Sc1, Ti1, V1, Cr1, Mn1, Fe1, Co1, Ni1, Cu1, Zr1, Nb1, Mo1, Ru1, Rh1, Pd1, Ag1, W1, Re1, Os1, Ir1, Pt1, and Au1) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM1 atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc1, Co1, Fe1, and Au1/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔGH* values via the Volmer-Heyrovsky pathway. Notably, Sc1 and Au1/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co1/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC2, IrO2, and RuO2. Also, Rh1 and Co1/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co1/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co1 and Rh1 in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM1/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.

Electronic Supplementary Material

Download File(s)
eem-7-5-12723_ESM.docx (17.1 MB)

References

[1]

Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.

[2]

K. Ahmad, S. Upadhyayula, Environ. Prog. Sustain. Energy 2019, 38, 98.

[3]

B.-C. Huang, J. Jiang, G.-X. Huang, H.-Q. Yu, J. Mater. Chem. A 2018, 6, 8978.

[4]

Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, J. Am. Chem. Soc. 2018, 140, 2610.

[5]

J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 2015, 347, 970.

[6]

C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347.

[7]

S. H. Talib, Z. Lu, X. Yu, K. Ahmad, B. Bashir, Z. Yang, J. Li, ACS Catal. 2021, 11, 8929.

[8]

J. Zhang, H. Yang, B. Liu, Adv. Energy Mater. 2021, 11, 2002473.

[9]

Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, Chem. Rev. 2020, 120, 12217.

[10]

S. Ott, A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hübner, U. Gernert, M. Gliech, M. Lerch, P. Strasser, Nat. Mater. 2020, 19, 77.

[11]

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. 2012, 3, 399.

[12]

W. Guo, Z. Wang, X. Wang, Y. Wu, Adv. Mater. 2021, 33, 2004287.

[13]

S. H. Talib, S. Hussain, S. Baskaran, Z. Lu, J. Li, ACS Catal. 2020, 10, 11951.

[14]

D. Liu, Q. He, S. Ding, L. Song, Adv. Energy Mater. 2020, 10, 2001482.

[15]

S. H. Talib, X. Yu, Z. Lu, K. Ahmad, T. Yang, H. Xiao, J. Li, J. Mater. Chem. A 2022, 10, 6165.

[16]

S. H. Talib, Z. Lu, B. Bashir, S. Hussain, K. Ahmad, S. Khan, S. Haider, Z. Yang, K. Hermansson, J. Li, Chin. Chem. Lett. 2023, 34, 107412.

[17]

M. B. Gawande, P. Fornasiero, R. Zbořil, ACS Catal. 2020, 10, 2231.

[18]

R. Li, L. Luo, X. Ma, W. Wu, M. Wang, J. Zeng, J. Mater. Chem. A 2022, 10, 5717.

[19]

X. Cao, Y. Ji, Y. Luo, J. Phys. Chem. C 2015, 119, 1016.

[20]

H.-Y. Zhuo, X. Zhang, J.-X. Liang, Q. Yu, H. Xiao, J. Li, Chem. Rev. 2020, 120, 12315.

[21]

W. Qu, C. Chen, Z. Tang, H. Wen, L. Hu, D. Xia, S. Tian, H. Zhao, C. He, D. Shu, Coord. Chem. Rev. 2023, 474, 214855.

[22]

G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256.

[23]

Y. Gao, Y. Xue, F. He, Y. Li, Proc. Natl. Acad. Sci. 2022, 119, e2206946119.

[24]

J. Li, L. Zhu, C. H. Tung, L. Z. Wu, Angew. Chem. 2023, 135, e202301384.

[25]

Y. Gao, Y. Xue, L. Qi, C. Xing, X. Zheng, F. He, Y. Li, Nat. Commun. 2022, 13, 5227.

[26]

S. Jalili, A. Pakzadiyan, Comput. Mater. Sci. 2023, 224, 112161.

[27]

K. Krishnamoorthy, S. Thangavel, J. C. Veetil, N. Raju, G. Venugopal, S. J. Kim, Int. J. Hydrogen Energy 2016, 41, 1672.

[28]

T. Lin, J. Wang, ACS Appl. Mater. Interfaces. 2018, 11, 2638.

[29]

J. Li, C. Wang, B. Zhang, Z. Wang, W. Yu, Y. Chen, X. Liu, Z. Guo, H. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 49281.

[30]

J. Li, C. Wan, C. Wang, H. Zhang, X. Chen, Chem. Res. Chin. Univ. 2020, 36, 622.

[31]

X. Dang, H. Zhao, TrAC Trends Anal. Chem. 2021, 137, 116194.

[32]

L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am. Chem. Soc. 2019, 141, 10677.

[33]

B. Liu, L. Xu, Y. Zhao, J. Du, N. Yang, D. Wang, J. Mater. Chem. A 2021, 9, 19298.

[34]

H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, M. Zhao, J. Appl. Phys. 2013, 113, 44309.

[35]

Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui, Y. Guo, G. Liang, X. Li, Z. Chen, Z. Huang, Angew. Chem. 2022, 134, e202112304.

[36]

L. Hui, Y. Xue, Y. Liu, Y. Li, Small 2021, 17, 2006136.

[37]

C. Hu, H. Liu, Y. Liu, J.-F. Chen, Y. Li, L. Dai, Nano Energy 2019, 63, 103874.

[38]

J. Gu, S. Magagula, J. Zhao, Z. Chen, Small Methods 2019, 3, 1800550.

[39]

Y. Lv, B. Kang, G. Chen, Y. Yuan, J. Ren, J. Y. Lee, Appl. Surf. Sci. 2023, 613, 156084.

[40]

Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 2018, 9, 1460.

[41]

Y. Gao, Z. Cai, X. Wu, Z. Lv, P. Wu, C. Cai, ACS Catal. 2018, 8, 10364.

[42]

B. Huang, N. Zhou, X. Chen, W. J. Ong, N. Li, Chem. A Eur. J. 2018, 24, 18479.

[43]

Y. Yu, J. Zhou, Z. Sun, Adv. Funct. Mater. 2020, 30, 2000570.

[44]

J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196.

[45]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[46]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[47]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[48]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[49]

M. Yu, D. R. Trinkle, J. Chem. Phys. 2011, 134, 64111.

[50]

W. Tang, E. Sanville, G. Henkelman, J. Condens, Matter Phys. 2009, 21, 084204.

[51]

G. Henkelman, H. Jónsson, J. Chem. Phys. 1999, 111, 7010.

[52]

P. Wu, P. Du, H. Zhang, C. Cai, Phys. Chem. Chem. Phys. 2015, 17, 1441.

[53]

Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, S. C. Smith, Chem. Commun. 2011, 47, 11843.

[54]

I. C. Gerber, P. Serp, Chem. Rev. 2019, 120, 1250.

[55]

G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.

[56]

B. Bashir, B. Zhang, B.-H. Lei, Z. Yang, M.-H. Lee, S. Pan, Cryst. Growth Des. 2016, 16, 5067.

[57]

B. Bashir, B. Zhang, S. Pan, Z. Yang, J. Alloys Compd. 2018, 758, 85.

[58]

B. Bashir, B. Zhang, M.-H. Lee, S. Pan, Z. Yang, Inorg. Chem. 2017, 56, 5636.

[59]

G. Xu, R. Wang, Y. Ding, Z. Lu, D. Ma, Z. Yang, J. Phys. Chem. C 2018, 122, 23481.

[60]

J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.

[61]

V. Fung, G. Hu, Z. Wu, D.-E. Jiang, J. Phys. Chem. C 2020, 124, 19571.

[62]

H. Ooka, J. Huang, K. S. Exner, Front. Energy Res. 2021, 9, 654460.

[63]

W. A. E. Prabowo, N. Khoiroh, S. Wibisono, A. Supardi, J. Phys. Conf. 2020, 1445, 012011.

[64]

H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2010, 2, 724.

[65]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886.

[66]

M. P. Browne, H. Nolan, G. S. Duesberg, P. E. Colavita, M. E. Lyons, ACS Catal. 2016, 6, 2408.

[67]

M. T. Koper, J. Electroanal. 2011, 660, 254.

Energy & Environmental Materials
Article number: e12723
Cite this article:
Talib SH, Bashir B, Khan MA, et al. Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support. Energy & Environmental Materials, 2024, 7(5): e12723. https://doi.org/10.1002/eem2.12723

50

Views

0

Downloads

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 September 2023
Revised: 15 December 2023
Published: 02 January 2024
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return