PDF (4.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co5.47N/CoN Heterojunctions

Sirui Liu1Qiong Gao1Bo Geng2Lili Wu1Zhikun Xu3Xinzhi Ma1,4,5 ()Shijie Liu1Boquan Li6()Mingyi Zhang1 ()Lirong Zhang1Xitian Zhang1 
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong 999077, China
College of Science, Southern University of Science and Technology, Shenzhen 518055, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Abstract

Solar irradiation can efficiently promote the kinetics of the oxygen evolution reaction (OER) during water splitting, where heterojunction catalysts exhibit excellent photoresponsive properties. However, insights into the origins of photoassisted OER catalysis remain unclear, especially the interfaced promotion under convergent solar irradiation (CSI). Herein, novel allotropic Co5.47N/CoN heterojunctions were synthesized, and corresponding OER mechanisms under CSI were comprehensively uncovered from physical and chemical aspects using the in situ Raman technique and electrochemical cyclic voltammetry method. Our results provide a unique mechanism where high-energy UV light promotes the Co3+/4+ conversion process in addition to the ordinary photoelectric effect excitation of the Co2+ material. Importantly, visible light under CSI can produce a photothermal effect for Co2+ excitation and Co3+/4+ conversion, which promotes the OER significantly more than the usual photoelectric effect. As a result, Co5.47N/CoN (containing 28% CoN) obtained 317.9% OER enhancement, which provides a pathway for constructing excellent OER catalysts.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12724_ESM1.tif (4.2 MB)
eem-7-5-e12724_ESM10.tif (205.4 KB)
eem-7-5-e12724_ESM11.tif (69.9 KB)
eem-7-5-e12724_ESM12.tif (6 MB)
eem-7-5-e12724_ESM13.tif (5.9 MB)
eem-7-5-e12724_ESM14.tif (31.3 KB)
eem-7-5-e12724_ESM15.tif (261.2 KB)
eem-7-5-e12724_ESM16.tif (312.7 KB)
eem-7-5-e12724_ESM17.tif (174 KB)
eem-7-5-e12724_ESM18.tif (260.5 KB)
eem-7-5-e12724_ESM19.tif (229.9 KB)
eem-7-5-e12724_ESM2.tif (160.3 KB)
eem-7-5-e12724_ESM20.docx (4.1 MB)
eem-7-5-e12724_ESM3.tif (3.7 MB)
eem-7-5-e12724_ESM4.tif (3.6 MB)
eem-7-5-e12724_ESM5.tif (12.4 MB)
eem-7-5-e12724_ESM6.tif (79.1 KB)
eem-7-5-e12724_ESM7.tif (214.7 KB)
eem-7-5-e12724_ESM8.tif (43.1 KB)
eem-7-5-e12724_ESM9.tif (257.6 KB)

References

[1]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.

[2]

S. Lyu, C. Guo, J. Wang, Z. Li, B. Yang, L. Lei, L. Wang, J. Xiao, T. Zhang, Y. Hou, Nat. Commun. 2022, 13, 6171.

[3]

J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215.

[4]

Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.

[5]

T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.

[6]

X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, ACS Catal. 2017, 7, 6464.

[7]

H. Meng, W. Xi, Z. Ren, S. Du, J. Wu, L. Zhao, B. Liu, H. Fu, Appl. Catal. B Environ. 2021, 284, 119707.

[8]

B. He, S. Jia, M. Zhao, Y. Wang, T. Chen, S. Zhao, Z. Li, Z. Lin, Y. Zhao, X. Liu, Adv. Mater. 2021, 33, 2004406.

[9]

A. S. M. Ismail, I. Garcia-Torregrosa, J. C. Vollenbroek, L. Folkertsma, J. G. Bomer, T. Haarman, M. Ghiasi, M. Schellhorn, M. Nachtegaal, M. Odijk, A. van den Berg, B. M. Weckhuysen, F. M. F. de Groot, ACS Catal. 2021, 11, 12324.

[10]

B. Jin, Y. Li, J. Wang, F. Meng, S. Cao, B. He, S. Jia, Y. Wang, Z. Li, X. Liu, Small 2019, 15, 1903847.

[11]

Y. Geng, Y. Zhao, J. Zhao, Y. Zhai, M. Yuan, X.-D. Wang, H. Gao, J. Feng, Y. Wu, L. Jiang, SmartMat 2021, 2, 388.

[12]

G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 2016, 138, 9128.

[13]

Y. Zhang, Y. Wang, H. Jiang, M. Huang, Small 2020, 16, 2002550.

[14]

T. Lu, T. Li, D. Shi, J. Sun, H. Pang, L. Xu, J. Yang, Y. Tang, SmartMat 2021, 2, 388.

[15]

P. Zhang, W. Wang, H. Wang, Y. Li, C. Cui, ACS Catal. 2020, 10, 10427.

[16]

L. Gan, J. Lai, Z. Liu, J. Luo, S. Zhang, Q. Zhang, J. Alloys Compd. 2022, 905, 164200.

[17]

P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 14710.

[18]

K. Oda, T. Yoshio, K. Oda, Mater. Sci. 1987, 22, 2729.

[19]

H. Jiang, X. Li, S. Zang, W. Zhang, J. Alloys Compd. 2021, 854, 155328.

[20]

Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu, C. Li, Appl. Catal. B Environ. 2019, 256, 117893.

[21]

H. Liu, X. Lu, Y. Hu, R. Chen, P. Zhao, L. Wang, G. Zhu, L. Ma, Z. Jin, J. Mater. Chem. A 2019, 7, 12489.

[22]

H. Qi, Y. Feng, Z. Chi, Y. Cui, M. Wang, J. Liu, Z. Guo, L. Wang, S. Feng, Nanoscale 2019, 11, 21943.

[23]

F. Wang, H. Zhao, Y. Ma, Y. Yang, B. Li, Y. Cui, Z. Guo, L. Wang, J. Energy Chem. 2020, 50, 52.

[24]

D. Li, W. Zhang, J. Zeng, B. Gao, Y. Tang, Q. Gao, Sci. China Mater. 1889, 2021, 64.

[25]

T. Wang, X. Cao, H. Qin, X. Chen, J. Li, L. Jiao, J. Mater. Chem. A 2021, 9, 21094.

[26]

X. Chen, Q. Zhang, L. Wu, L. Shen, H. Fu, J. Luo, X. Li, J. Lei, H. Luo, N. B. Li, Mater. Today Phys. 2020, 15, 100268.

[27]

S.-H. Cho, K. Yoon, K. Shin, J.-W. Jung, C. Kim, J. Cheong, D.-Y. Youn, S. Song, G. Henkelman, I.-D. Kim, Chem. Mater. 2018, 30, 5941.

[28]

X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, X. Zhuang, S. Yang, L. He, H. Liu, D. Sheng, Adv. Mater. 2017, 29, 1704091.

[29]

K. Yoon, C.-K. Hwang, S.-H. Kim, J.-W. Jung, J. Chae, J. Kim, K. Lee, A. Lim, S.-H. Cho, J. P. Singh, J. M. Kim, K. Shin, B. M. Moon, H. S. Park, H.-J. Kim, K. H. Chae, H. C. Ham, I.-D. Kim, J. Y. Kim, ACS Nano 2021, 15, 11218.

[30]

R.-Q. Li, P. Hu, M. Miao, Y. Li, X.-F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, X.-B. Wang, J. Mater. Chem. A 2018, 6, 24767.

[31]

H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 2020, 30, 1910596.

[32]

Z. Cui, X. Liang, P. Wang, P. Zhou, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, B. Huang, Electrochim. Acta 2021, 395, 139128.

[33]

T. Liu, S. Zhao, Y. Wang, J. Yu, Y. Dai, J. Wang, X. Sun, K. Liu, M. Ni, Small 2022, 18, 2105887.

[34]

N. Wang, B. Hao, H. Chen, R. Zheng, B. Chen, S. Kuang, X. Chen, L. Cui, Chem. Eng. J. 2021, 413, 127954.

[35]

I. Kone, Z. Ahmad, A. Xie, Y. Tang, Y. Sun, Y. Chen, X. Yang, P. Wan, Energ. Technol. 2020, 8, 2000409.

[36]

W. Yuan, S. Wang, Y. Ma, Y. Qiu, Y. An, L. Cheng, ACS Energy Lett. 2020, 5, 692.

[37]

H. Ge, G. Li, J. Shen, W. Ma, X. Meng, L. Xu, Appl. Catal. B Environ. 2020, 275, 119104.

[38]

F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.

[39]

Y. Wu, Y. Li, M. Yuan, H. Hao, X. San, Z. Lv, L. Xu, B. Wei, Chem. Eng. J. 2022, 427, 131944.

[40]

L. Gao, X. Cui, Z. Wang, Z. Lin, Proc. Natl Acad. Sci. USA 2020, 118, e202421118.

[41]

Y. Li, Y. Wu, H. Hao, M. Yuan, Z. Lv, L. Xu, B. Wei, Appl. Catal. B Environ. 2022, 305, 121033.

[42]

D. Xu, J. Yao, X. Ma, Y. Xiao, C. Zhang, W. Lin, H. Gao, J. Colloid. Interf. Sci. 2022, 619, 298.

[43]

L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed. 2016, 55, 5277.

[44]

X. Ma, K. Zhao, Y. Sun, Y. Wang, F. Yan, X. Zhang, Y. Chen, Catal. Sci. Technol. 2020, 10, 2165.

[45]

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.

[46]

M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329.

[47]

K. Hara, T.-A. Yano, K. Suzuki, M. Hirayama, T. Hayashi, R. Kanno, M. Hara, Anal. Sci. 2017, 33, 853.

[48]

R. L. Ciceo, M. Todeab, R. Dudric, A. Buhai, V. Simon, J. Non-Cryst. Solids 2018, 481, 562.

[49]

M. A. Camacho-López, S. Vargas, R. Arroyo, E. Haro-Poniatowski, R. Rodríguez, Opt. Mater. 2002, 20, 43.

[50]

J. C. Christie, I. W. Johnstone, G. D. Jones, K. Zdansky, Phys. Rev. B 1975, 12, 4656.

Energy & Environmental Materials
Article number: e12724
Cite this article:
Liu S, Gao Q, Geng B, et al. Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co5.47N/CoN Heterojunctions. Energy & Environmental Materials, 2024, 7(5): e12724. https://doi.org/10.1002/eem2.12724
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return