PDF (2.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Confluence of ZnO and PTFE Binder for Enhancing Performance of Thin-Film Lithium-Ion Batteries

Subhashree Behera1Swathi Ippili1Venkatraju Jella1Na-Yeong Kim2Seong Cheol Jang3Ji-Won Jung2()Soon-Gil Yoon1()Hyun-Suk Kim1,3()
Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
School of Materials Science and Engineering, University of Ulsan, Ulsan 44776, South Korea
Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, South Korea
Show Author Information

Abstract

Developing anode materials with high specific capacity and cycling stability is vital for improving thin-film lithium-ion batteries. Thin-film zinc oxide (ZnO) holds promise due to its high specific capacity, but it suffers from volume changes and structural stress during cycling, leading to poor battery performance. In this research, we ingeniously combined polytetrafluoroethylene (PTFE) with ZnO using a radio frequency (RF) magnetron co-sputtering method, ensuring a strong bond in the thin-film composite electrode. PTFE effectively reduced stress on the active material and mitigated volume change effects during Li+ ion intercalation and deintercalation. The composite thin films are thoroughly characterized using advanced techniques such as X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy for investigating correlations between material properties and electrochemical behaviors. Notably, the ZnO/PTFE thin-film electrode demonstrated an impressive specific capacity of 1305 mAh g−1 (=7116 mAh cm−3) at a 0.5C rate and a remarkable capacity retention of 82% from the 1st to the 100th cycle, surpassing the bare ZnO thin film (50%). This study provides valuable insights into using binders to stabilize active materials in thin-film batteries, enhancing battery performance.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12734_ESM.docx (11.5 MB)

References

[1]

M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energ. Environ. Sci. 2012, 5, 7854.

[2]

S. N. Lauro, J. N. Burrow, C. B. Mullins, eScience 2023, 3, 100152.

[3]

Y. Cao, H. Fang, C. Guo, W. Sun, Y. Xu, Y. Wu, Y. Wang, Angew. Chem. 2023, 62, e202302143.

[4]

J. Yuan, X. Zhang, C. Chen, Y. Hao, R. Agrawal, C. Wang, W. Li, H. Yu, Y. Yu, X. Zhu, Z. Xiong, Y. Xie, Mater. Lett. 2017, 190, 37.

[5]

Y. N. Zhou, W. J. Li, Z. W. Fu, Electrochim. Acta 2012, 59, 435.

[6]

G. Zhang, H. Bin Wu, H. E. Hoster, X. W. Lou, Energy Environ. Sci. 2014, 7, 302.

[7]

L. Li, S. Liu, H. Zhou, Q. Lei, K. Qian, Mater. Lett. 2018, 216, 135.

[8]

Q. Xie, Y. Ma, X. Wang, D. Zeng, L. Wang, L. Mai, D. L. Peng, ACS Nano 2016, 10, 1283.

[9]

D. Song, Appl. Surf. Sci. 2008, 254, 4171.

[10]

W. Bai, J. Gao, K. Li, G. Wang, T. Zhou, P. Li, S. Qin, G. Zhang, Z. Guo, C. Xiao, Y. Xie, Angew. Chem. Int. Ed. 2020, 59, 17494.

[11]

M. Laurenti, N. Garino, S. Porro, M. Fontana, C. Gerbaldi, J. Alloys Compd. 2015, 640, 321.

[12]

B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochim. Acta 2019, 320, 134604.

[13]

B. Zhu, N. Liu, M. McDowell, Y. Jin, Y. Cui, J. Zhu, Nano Energy 2015, 13, 620.

[14]

L. B. Chen, J. Y. Xie, H. C. Yu, T. H. Wang, Electrochim. Acta 2008, 53, 8149.

[15]

E. H. Wolf, M. M. Millet, F. Seitz, F. A. Redeker, W. Riedel, G. Scholz, W. Hetaba, D. Teschner, S. Wrabetz, F. Girgsdies, A. Klyushin, T. Risse, S. Riedel, E. Frei, Phys. Chem. Chem. Phys. 2020, 22, 11273.

[16]

G. Tang, X. Ma, M. Sun, X. Li, Carbon N. Y. 2005, 43, 345.

[17]

J. Gao, Y. Li, L. Shi, J. Li, G. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 20635.

[18]

X. Tang, C. Liu, H. Wang, L. P. Lv, W. Sun, Y. Wang, Coord. Chem. Rev. 2023, 494, 215361.

[19]

D. Kim, J. Y. Leem, Sci. Rep. 2021, 11, 382.

[20]

L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902.

[21]

B. H. Park, M. H. Lee, S. B. Kim, Y. M. Jo, Appl. Surf. Sci. 2011, 257, 3709.

[22]

S. Ippili, V. Jella, J. M. Lee, J. S. Jung, D. H. Lee, T. Y. Yang, S. G. Yoon, J. Mater. Chem. A 2022, 10, 22067.

[23]

S. Ippili, B. Kim, V. Jella, J. S. Jung, V. H. Vuong, S. G. Yoon, ACS Sustain. Chem. Eng. 2022, 10, 2136.

[24]

S. Lu, H. Wang, J. Zhou, X. Wu, W. Qin, Nanoscale 2017, 9, 1184.

[25]

H. M. Xiong, X. Zhao, J. S. Chen, J. Phys. Chem. B 2001, 105, 10169.

[26]

S. Gao, Y. Su, L. Bao, N. Li, L. Chen, Y. Zheng, J. Tian, J. Li, S. Chen, F. Wu, J. Power Sources 2015, 298, 292.

[27]

C. M. Chingo AimacanÌa, D. A. Quinchiguango Perez, S. Rocha Pinto, A. Debut, M. F. Attia, R. Santos-Oliveira, D. C. Whitehead, T. Terencio, F. Alexis, S. A. Dahoumane, ACS Biomater. Sci. Eng. 2021, 7, 1181.

[28]

X. H. Huang, X. H. Xia, Y. F. Yuan, F. Zhou, Electrochim. Acta 2011, 56, 4960.

[29]

X. Wu, S. Li, B. Wang, J. Liu, M. Yu, RSC Adv. 2015, 5, 81341.

[30]

S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas, J. Mater. Sci. 2013, 48, 5429.

[31]

F. Belliard, J. T. S. Irvine, J. Power Sources 2001, 97, 219.

[32]

Shilpa, B. M. Basavaraja, S. B. Majumder, A. Sharma, J. Mater. Chem. A 2015, 3, 5344.

[33]

P. Li, Y. Liu, J. Liu, Z. Li, G. Wu, M. Wu, Chem. Eng. J. 2015, 271, 173.

[34]

X. Shen, D. Mu, S. Chen, B. Wu, F. Wu, ACS Appl. Mater. Interfaces 2013, 5, 3118.

[35]

A. Song, J. H. Kim, H. Yong, Y. Rho, D. S. Song, E. Cho, M. J. Kim, K. B. Chung, H. S. Kim, S. J. Lee, ACS Appl. Nano Mater. 2022, 5, 14540.

[36]

Y. Zhao, X. Li, J. Liu, C. Wang, Y. Zhao, G. Yue, ACS Appl. Mater. Interfaces 2016, 8, 6472.

[37]

M. S. Wang, M. Lei, Z. Q. Wang, X. Zhao, J. Xu, W. Yang, Y. Huang, X. Li, J. Power Sources 2016, 309, 238.

[38]

X. He, Y. Hu, R. Chen, Z. Shen, K. Wu, Z. Cheng, P. Pan, Chem. Eng. J. 2019, 360, 1020.

[39]

E. Dhanumalayan, G. M. Joshi, Adv. Compos. Hybrid Mater. 2018, 1, 247.

[40]

D. Zhao, Z. He, G. Wang, H. Wang, Q. Zhang, Y. Li, Sens. Actuators B Chem. 2016, 229, 281.

[41]

S. Zhang, M. Zheng, J. Song, N. Li, H. Lu, J. Cao, Solid State Sci. 2014, 38, 97.

Energy & Environmental Materials
Article number: e12734
Cite this article:
Behera S, Ippili S, Jella V, et al. Confluence of ZnO and PTFE Binder for Enhancing Performance of Thin-Film Lithium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12734. https://doi.org/10.1002/eem2.12734
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return