Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate’s superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.
H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J. M. Tarascon, ChemSusChem 2008, 1, 348.
M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
Y. Liang, P. Zhang, J. Chen, Chem. Sci. 2013, 4, 1330.
G. S. Vadehra, R. P. Maloney, M. A. Garcia-Garibay, B. Dunn, Chem. Mater. 2014, 26, 7151.
Y. Hanyu, Y. Ganbe, I. Honma, J. Power Sources 2013, 221, 186.
L. Zhu, J. Liu, Z. Liu, L. Xie, X. Cao, ChemElectroChem 2019, 6, 787.
C. Peng, G. H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. F. Ng, Y. S. Hu, Y. Yang, M. Armand, K. P. Loh, Nat. Energy 2017, 2, 17074.
K. Pirnat, R. Dominko, R. Cerc-Korosec, G. Mali, B. Genorio, M. Gaberscek, J. Power Sources 2012, 199, 308.
B. Genorio, K. Pirnat, R. Cerc-Korosec, R. Dominko, M. Gaberscek, Angew. Chem. Int. Ed. 2010, 122, 7380.
W. Wan, H. Lee, X. Yu, C. Wang, K. W. Nam, X. Q. Yang, H. Zhou, RSC Adv. 2014, 4, 19878.
Z. Ba, Z. Wang, M. Luo, H. B. Li, Y. Li, T. Huang, J. Dong, Q. Zhang, X. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 807.
Z. Luo, L. Liu, J. Ning, K. Lei, Y. Lu, F. Li, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 9443.
Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Z. Song, Y. Qian, T. Zhang, H. Zhou, M. Otani, Adv. Sci. 2015, 2, 1500124.
C. Guo, K. Zhang, Q. Zhao, L. Pei, J. Chen, Chem. Commun. 2015, 51, 10244.
Y. Hanyu, T. Sugimoto, Y. Ganbe, A. Masuda, I. Honma, J. Electrochem. Soc. 2014, 161, A6.
A. Unemoto, Y. Iwai, S. Mitani, S. W. Baek, S. Ito, T. Tomai, J. Kawamura, I. Honma, Solid State Ion. 2011, 201, 11.
M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904.
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.
E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525.
F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 2016, 6, 1501590.
Z. Shadike, S. Tan, Q. C. Wang, R. Lin, E. Hu, D. Qu, X. Q. Yang, Mater. Horizons 2021, 8, 471.
X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao, H. M. Cheng, F. Li, Energy Environ. Sci. 2020, 13, 1076.
S. J. Visco, L. C. DeJonghe, J. Electrochem. Soc. 1988, 135, 2905.
D. Y. Wang, W. Guo, Y. Fu, Acc. Chem. Res. 2019, 52, 2290.
A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj, Y. Fu, J. Mater. Chem. A 2017, 5, 25005.
D. Y. Wang, Y. Si, J. Li, Y. Fu, J. Mater. Chem. A 2019, 7, 7423.
D.-Y. Wang, Y. Si, W. Guo, Y. Fu, D. Wang, Y. Si, W. Guo, Y. Fu, Adv. Sci. 2020, 7, 1902646.
S. Cesarec, F. Edgar, T. Lai, C. Plisson, Dalton Trans. 2022, 51, 5004.
P. W. Miller, D. Bender, Chemistry 2012, 18, 433.
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, J. Am. Chem. Soc. 2014, 136, 16461.
W. Wei, L. Li, L. Zhang, J. Hong, G. He, Electrochem. Commun. 2018, 90, 21.
J. Yu, L. Chen, Q. Wu, J. Wang, L. Cheng, H. G. Wang, J. Colloid Interface Sci. 2023, 649, 159.
W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang, Y. Xia, Solid State Ion. 2017, 300, 114.
C. Luo, X. Ji, J. Chen, K. J. Gaskell, X. He, Y. Liang, J. Jiang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 8567.
W. Ji, X. Zhang, L. Xin, A. Luedtke, D. Zheng, H. Huang, T. Lambert, D. Qu, Energy Storage Mater. 2022, 45, 680.
Y. Zhang, Y. An, S. Dong, J. Jiang, H. Dou, X. Zhang, J. Phys. Chem. C 2018, 122, 22294.
H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng, Y. Tian, L. Ci, B. Xi, S. Xiong, J. Feng, J. Power Sources 2018, 399, 294.
X. Chi, F. Hao, J. Zhang, X. Wu, Y. Zhang, S. Gheytani, Nano Energy 2019, 62, 718.
X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong, P. Hu, S. Lee, Y. Yao, Angew. Chem. Int. Ed. 2018, 57, 2630.
F. Hao, Y. Liang, Y. Zhang, Z. Chen, J. Zhang, Q. Ai, H. Guo, Z. Fan, J. Lou, Y. Yao, ACS Energy Lett. 2021, 6, 201.
W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang, H. Li, G. Zhu, J. Li, H. Jin, L. Yu, Battery Energy 2023, 2, 20230021.
J. Chen, Z. Lin, W. Xiang, B. Wu, G. Zhang, X. Wen, Y. Che, D. Ruan, W. Li, M. Chen, Electrochim. Acta 2022, 436, 141374.
J. Sicklinger, H. Beyer, S. Oswald, M. Bock, A. Hubert, F. Friedrich, S. Pieper, L. Lini, C. Mn, L. Zhu, T. Yan, D. Jia, Y. Wang, Q. Wu, H. Gu, J. Electrochem. Soc. 2019, 166, A5437.
W. Suetaka, Bull. Chem. Soc. Jpn. 1967, 40, 2077.
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7020.