PDF (2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery

Yan Chen1Mingcong Yang1,2,3()Wei Hu1Tao Chen3Jun Li1Shun Wang1Huile Jin1()Jichang Wang4 ()
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
Show Author Information

Abstract

Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate’s superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12819_ESM.docx (1.8 MB)

References

[1]

H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J. M. Tarascon, ChemSusChem 2008, 1, 348.

[2]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[3]

Y. Liang, P. Zhang, J. Chen, Chem. Sci. 2013, 4, 1330.

[4]

G. S. Vadehra, R. P. Maloney, M. A. Garcia-Garibay, B. Dunn, Chem. Mater. 2014, 26, 7151.

[5]

Y. Hanyu, Y. Ganbe, I. Honma, J. Power Sources 2013, 221, 186.

[6]

L. Zhu, J. Liu, Z. Liu, L. Xie, X. Cao, ChemElectroChem 2019, 6, 787.

[7]

C. Peng, G. H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. F. Ng, Y. S. Hu, Y. Yang, M. Armand, K. P. Loh, Nat. Energy 2017, 2, 17074.

[8]

K. Pirnat, R. Dominko, R. Cerc-Korosec, G. Mali, B. Genorio, M. Gaberscek, J. Power Sources 2012, 199, 308.

[9]

B. Genorio, K. Pirnat, R. Cerc-Korosec, R. Dominko, M. Gaberscek, Angew. Chem. Int. Ed. 2010, 122, 7380.

[10]

W. Wan, H. Lee, X. Yu, C. Wang, K. W. Nam, X. Q. Yang, H. Zhou, RSC Adv. 2014, 4, 19878.

[11]

Z. Ba, Z. Wang, M. Luo, H. B. Li, Y. Li, T. Huang, J. Dong, Q. Zhang, X. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 807.

[12]

Z. Luo, L. Liu, J. Ning, K. Lei, Y. Lu, F. Li, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 9443.

[13]

Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Z. Song, Y. Qian, T. Zhang, H. Zhou, M. Otani, Adv. Sci. 2015, 2, 1500124.

[14]

C. Guo, K. Zhang, Q. Zhao, L. Pei, J. Chen, Chem. Commun. 2015, 51, 10244.

[15]

Y. Hanyu, T. Sugimoto, Y. Ganbe, A. Masuda, I. Honma, J. Electrochem. Soc. 2014, 161, A6.

[16]

A. Unemoto, Y. Iwai, S. Mitani, S. W. Baek, S. Ito, T. Tomai, J. Kawamura, I. Honma, Solid State Ion. 2011, 201, 11.

[17]

M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904.

[18]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.

[19]

E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 2011, 40, 2525.

[20]

F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 2016, 6, 1501590.

[21]

Z. Shadike, S. Tan, Q. C. Wang, R. Lin, E. Hu, D. Qu, X. Q. Yang, Mater. Horizons 2021, 8, 471.

[22]

X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao, H. M. Cheng, F. Li, Energy Environ. Sci. 2020, 13, 1076.

[23]

S. J. Visco, L. C. DeJonghe, J. Electrochem. Soc. 1988, 135, 2905.

[24]

D. Y. Wang, W. Guo, Y. Fu, Acc. Chem. Res. 2019, 52, 2290.

[25]

A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj, Y. Fu, J. Mater. Chem. A 2017, 5, 25005.

[26]

D. Y. Wang, Y. Si, J. Li, Y. Fu, J. Mater. Chem. A 2019, 7, 7423.

[27]

D.-Y. Wang, Y. Si, W. Guo, Y. Fu, D. Wang, Y. Si, W. Guo, Y. Fu, Adv. Sci. 2020, 7, 1902646.

[28]

S. Cesarec, F. Edgar, T. Lai, C. Plisson, Dalton Trans. 2022, 51, 5004.

[29]

P. W. Miller, D. Bender, Chemistry 2012, 18, 433.

[30]

J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.

[31]

Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, J. Am. Chem. Soc. 2014, 136, 16461.

[32]

W. Wei, L. Li, L. Zhang, J. Hong, G. He, Electrochem. Commun. 2018, 90, 21.

[33]

J. Yu, L. Chen, Q. Wu, J. Wang, L. Cheng, H. G. Wang, J. Colloid Interface Sci. 2023, 649, 159.

[34]

W. Li, L. Chen, Y. Sun, C. Wang, Y. Wang, Y. Xia, Solid State Ion. 2017, 300, 114.

[35]

C. Luo, X. Ji, J. Chen, K. J. Gaskell, X. He, Y. Liang, J. Jiang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 8567.

[36]

W. Ji, X. Zhang, L. Xin, A. Luedtke, D. Zheng, H. Huang, T. Lambert, D. Qu, Energy Storage Mater. 2022, 45, 680.

[37]

Y. Zhang, Y. An, S. Dong, J. Jiang, H. Dou, X. Zhang, J. Phys. Chem. C 2018, 122, 22294.

[38]

H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng, Y. Tian, L. Ci, B. Xi, S. Xiong, J. Feng, J. Power Sources 2018, 399, 294.

[39]

X. Chi, F. Hao, J. Zhang, X. Wu, Y. Zhang, S. Gheytani, Nano Energy 2019, 62, 718.

[40]

X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong, P. Hu, S. Lee, Y. Yao, Angew. Chem. Int. Ed. 2018, 57, 2630.

[41]

F. Hao, Y. Liang, Y. Zhang, Z. Chen, J. Zhang, Q. Ai, H. Guo, Z. Fan, J. Lou, Y. Yao, ACS Energy Lett. 2021, 6, 201.

[42]

W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang, H. Li, G. Zhu, J. Li, H. Jin, L. Yu, Battery Energy 2023, 2, 20230021.

[43]

J. Chen, Z. Lin, W. Xiang, B. Wu, G. Zhang, X. Wen, Y. Che, D. Ruan, W. Li, M. Chen, Electrochim. Acta 2022, 436, 141374.

[44]

J. Sicklinger, H. Beyer, S. Oswald, M. Bock, A. Hubert, F. Friedrich, S. Pieper, L. Lini, C. Mn, L. Zhu, T. Yan, D. Jia, Y. Wang, Q. Wu, H. Gu, J. Electrochem. Soc. 2019, 166, A5437.

[45]

W. Suetaka, Bull. Chem. Soc. Jpn. 1967, 40, 2077.

[46]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[47]

Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7020.

Energy & Environmental Materials
Cite this article:
Chen Y, Yang M, Hu W, et al. Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12819
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return