PDF (4.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries

Koji Hiraoka1Kazuo Yamamoto2()Takeshi Kobayashi3Tetsuo Sakamoto4Shiro Seki1 ()
Graduate School of Engineering, Applied Chemistry and Chemical Engineering Program, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, Aichi 456-8587, Japan
Energy Transformation Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1, Nagasaka, Yokosuka, Kanagawa 240-0196, Japan
Graduate School of Engineering, Electrical Engineering and Electronics Program, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
Show Author Information

Abstract

Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems, but extremely complicated reactions are involved. Because these complex phenomena are also bottlenecks for the establishment of all-solid-state batteries (ASSB), we conducted multi-scale analysis using combined multi-measurement techniques, to directly observe charge/discharge reactions at hierarchical scales for the oxide-type ASSB using Na as the carrier cation. In particular, all of measurement techniques are applied to cross-section ASSB in the same cell, to complementarily evaluate the elemental distributions and structural changes. From Operando scanning electron microscopy–energy-dispersive X-ray spectroscopy, the Na concentration in the electrode layers changes on the micrometer scale under charge/discharge reactions in the first cycle. Furthermore, Operando Raman spectroscopy reveal changes in the bonding states at the atomic scale in the active material, including changes in reversible structural changes. After cycling the ASSB, the elemental distributions are clearly observed along with the particle shapes and can reveal the Na migration mechanism at the nanometer scale, by time-of-flight secondary ion mass spectrometry. Therefore, this study can provide a fundamental and comprehensive understanding of the charge/discharge mechanism by observing reaction processes at multiple scales.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12821_ESM.docx (924.9 KB)

References

[1]

B. Obama, Science 2017, 355, 126.

[2]

K. Peng, K. Feng, B. Chen, Y. Shan, N. Zhang, P. Wang, K. Fang, Y. Bai, X. Zou, W. Wei, X. Geng, Y. Zhang, J. Li, Nat. Commun. 2023, 14, 3144.

[3]

B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.

[4]

N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512.

[5]

C. Xu, P. Behrens, P. Gasper, K. Smith, M. Hu, A. Tukker, B. Steubing, Nat. Commun. 2023, 14, 119.

[6]

J. M. Tarascon, Nat. Chem. 2010, 2, 510.

[7]

J. T. Frith, M. J. Lacey, U. Ulissi, Nat. Commun. 2023, 14, 420.

[8]

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energ. Environ. Sci. 2011, 4, 3243.

[9]

W. Cao, J. Zhang, H. Li, Energy Storage Mater. 2020, 26, 46.

[10]

H. Li, Joule 2019, 3, 911.

[11]

P. Minnmann, F. Strauss, A. Bielefeld, R. Ruess, P. Adelhelm, S. Burkhardt, S. L. Dreyer, E. Trevisanello, H. Ehrenberg, T. Brezesinski, F. H. Richter, J. Janek, Adv. Energy Mater. 2022, 12, 2201425.

[12]

C. Wang, J. Liang, J. T. Kim, X. Sun, Sci. Adv. 2022, 8, eadc9516.

[13]

Y. Gambe, Y. Sun, I. Honma, Sci. Rep. 2015, 5, 8869.

[14]

D. Cao, X. Sun, Y. Wang, H. Zhu, Energy Storage Mater. 2022, 48, 458.

[15]

V. Livshits, A. Blum, E. Strauss, G. Ardel, D. Golodnitsky, E. Peled, J. Power Sources 2001, 97, 782.

[16]

A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[17]

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.

[18]

A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 2012, 3, 856.

[19]

R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 2007, 46, 7778.

[20]

Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Adv. Mater. 2020, 32, 1906221.

[21]

H. Y. P. Hong, Mater. Res. Bull. 1976, 11, 173.

[22]

A. Hooper, J. Phys. D Appl. Phys. 1977, 10, 1487.

[23]

T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075.

[24]

H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 2009, 131, 894.

[25]

G. C. Farrington, J. L. Briant, Science 1979, 204, 1371.

[26]

F. Gebert, J. Knott, R. Gorkin, S. L. Chou, S. X. Dou, Energy Storage Mater. 2021, 36, 10.

[27]

J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.

[28]

T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.

[29]
Nat. Commun. 2022, 13, 4723.
[30]

I. López, J. Morey, J. B. Ledeuil, L. Madec, H. Martinez, J. Mater. Chem. A 2021, 9, 25341.

[31]

F. Strauss, D. Kitsche, Y. Ma, J. H. Teo, D. Goonetilleke, J. Janek, M. Bianchini, T. Brezesinski, Adv. Energy Sustain. Res. 2021, 2, 2100004.

[32]

Y. Shen, S. Wang, H. Li, K. Wang, K. Jiang, J. Energy Storage 2023, 64, 107164.

[33]

R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[34]

C. P. Grey, J. M. Tarascon, Nat. Mater. 2016, 16, 45.

[35]

D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, X. Qin, Q. Yang, M. Wagemaker, F. Kang, X. Yang, B. Li, Adv. Mater. 2019, 31, 1806620.

[36]

Y. Nomura, K. Yamamoto, M. Fujii, T. Hirayama, E. Igaki, K. Saitoh, Nat. Commun. 2020, 11, 2824.

[37]

E. Flores, P. Novák, E. J. Berg, Front. Energy Res. 2018, 6, 82.

[38]

T. Ono, K. Hiraoka, T. Kobayashi, K. Yamamoto, S. Seki, ACS Appl. Energy Mater. 2023, 6, 6194.

[39]

S. R. Taylor, Geochim. Cosmochim. Acta 1964, 28, 1273.

[40]

C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013.

[41]

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.

[42]

K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459.

[43]

X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater. 2015, 27, 6670.

[44]

Y. Noguchi, E. Kobayashi, L. S. Plashnitsa, S. Okada, J. I. Yamaki, Electrochim. Acta 2013, 101, 59.

[45]

S. Bag, C. Zhou, S. Reid, S. Butler, V. Thangadurai, J. Power Sources 2020, 454, 227954.

[46]

J. B. Goodenough, H. Y. Hong, J. A. Kafalas, Mater. Res. Bull. 1976, 5, 77843.

[47]

Y. B. Rao, L. N. Patro, Mater. Lett. 2021, 301, 130267.

[48]

H. Park, K. Jung, M. Nezafati, C. S. Kim, B. Kang, ACS Appl. Mater. Interfaces 2016, 8, 27814.

[49]

B. Ouyang, J. Wang, T. He, C. J. Bartel, H. Huo, Y. Wang, V. Lacivita, H. Kim, G. Ceder, Nat. Commun. 2021, 12, 5752.

[50]

S. Y. Lim, H. Kim, R. A. Shakoor, Y. Jung, J. W. Choi, J. Electrochem. Soc. 2012, 159, A1393.

[51]

F. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.

[52]

M. Osada, M. Kakihana, Carbon N. Y. 2007, 45, 2460.

[53]

A. C. Ferrari, Solid State Commun. 2007, 143, 47.

[54]

P. K. Jha, O. P. Pandey, K. Singh, SILICON 2017, 9, 411.

[55]

Y. Wang, Z. Wang, F. Zheng, J. Sun, J. A. S. Oh, T. Wu, G. Chen, Q. Huang, M. Kotobuki, K. Zeng, L. Lu, Adv. Sci. 2022, 9, 2105849.

[56]

J. S. de Andrade, A. G. Pinheiro, I. F. Vasconcelos, J. M. Sasaki, J. A. C. de Paiva, M. A. Valente, A. S. B. Sombra, J. Phys. Condens. Matter 1999, 11, 4451.

[57]

F. H. El-Batal, E. M. Khalil, Y. M. Hamdy, H. M. Zidan, M. S. Aziz, A. M. Abdelghany, SILICON 2010, 2, 41.

[58]

V. Kravchenko, V. Michailov, S. Sigaryov, Solid State Ion. 1992, 50, 19.

[59]

N. Membreño, P. Xiao, K.-S. Park, J. B. Goodenough, G. Henkelman, K. J. Stevenson, J. Phys. Chem. C 2013, 117, 11994.

[60]

Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater. 2013, 3, 156.

[61]

W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, C. E. Banks, J. Mater. Chem. A 2014, 2, 5358.

[62]

Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei, J. Mater. Chem. A 2015, 3, 17558.

[63]

C. Kaps, F. Schirrmeister, P. Stefanski, J. Non Cryst. Solids 1986, 87, 159.

[64]

D. Kutsuzawa, T. Kobayashi, S. Komiya, ACS Appl. Energy Mater. 2022, 5, 4025.

[65]

T. Kobayashi, F. Chen, V. Seznec, C. Masquelier, J. Power Sources 2020, 450, 227597.

[66]

T. Sakamoto, M. Koizumi, J. Kawasaki, J. Yamaguchi, Appl. Surf. Sci. 2008, 255, 1617.

Energy & Environmental Materials
Cite this article:
Hiraoka K, Yamamoto K, Kobayashi T, et al. Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12821
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return