PDF (2.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

New Mn Electrochemistry for Rechargeable Aqueous Batteries: Promising Directions Based on Preliminary Results

Hyungjin Lee1Amey Nimkar2Hyeonjun Lee3Netanel Shpigel4Daniel Sharon5Seung-Tae Hong1,6Munseok S. Chae3()
Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
Department of Chemistry and BINA—BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
Department of Nanotechnology Engineering, Pukyong National University, Busan 48547, Korea
Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
Show Author Information

Abstract

Aqueous batteries with metal anodes exhibit robust anodic capacities, but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions. Current metal options, such as Zn and Al, pose a dilemma: Zn lacks a sufficiently low redox potential, whereas Al tends to be strongly oxidized in aqueous environments. Our investigation introduces a novel rechargeable aqueous battery system based on Mn as the anode. We examine the effects of anions, electrolyte concentration, and diverse cathode chemistries. Notably, the ClO4-based electrolyte solution exhibits improved deposition and dissolution efficiencies. Although stainless steel (SS 316 L) and Ni are stable current collectors for cathodes, they display limitations as anodes. However, using Ti as the anode resulted in increased Mn deposition and dissolution efficiencies. Moreover, we evaluate this system using various cathode materials, including Mn-intercalation-based inorganic (Ag0.33V2O5) and organic (perylenetetracarboxylic dianhydride) cathodes and an anion-intercalation-chemistry (coronene)-based cathode. These configurations yield markedly higher output potentials compared to those of Zn metal batteries, highlighting the potential for an augmented energy density when using an Mn anode. This study outlines a systematic approach for use in optimizing metal anodes in Mn metal batteries, unlocking novel prospects for Mn-based batteries with diverse cathode chemistries.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12823_ESM.pdf (2.9 MB)

References

[1]

M. S. Chae, H. J. Kim, J. Lyoo, R. Attias, Y. Elias, Y. Gofer, S.-T. Hong, D. Aurbach, ACS Appl. Energy Mater. 2020, 3, 10744.

[2]

R. Emanuelsson, M. Sterby, M. Strømme, M. Sjodin, J. Am. Chem. Soc. 2017, 139, 4828.

[3]

S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 2017, 4, 1700465.

[4]

L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, Angew. Chem. 2016, 128, 7252.

[5]

F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, ACS Central Sci. 2017, 3, 1121.

[6]

X. Wu, Y. Qi, J. J. Hong, Z. Li, A. S. Hernandez, X. Ji, Angew. Chem. Int. Ed. 2017, 56, 13026.

[7]

G. Liang, F. Mo, Q. Yang, Z. Huang, X. Li, D. Wang, Z. Liu, H. Li, Q. Zhang, C. Zhi, Adv. Mater. 2019, 31, 1905873.

[8]

X. Wu, A. Markir, Y. Xu, C. Zhang, D. P. Leonard, W. Shin, X. Ji, Adv. Funct. Mater. 2019, 29, 1900911.

[9]

C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. 2012, 124, 957.

[10]

G. A. Elia, K. V. Kravchyk, M. V. Kovalenko, J. Chacón, A. Holland, R. G. Wills, J. Power Sources 2021, 481, 228870.

[11]

H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energ. Environ. Sci. 2013, 6, 2265.

[12]

D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724.

[13]

M. Wang, X. Zheng, X. Zhang, D. Chao, S. Z. Qiao, H. N. Alshareef, Y. Cui, W. Chen, Adv. Energy Mater. 2021, 11, 2002904.

[14]

M. Wang, Y. Meng, Y. Xu, N. Chen, M. Chuai, Y. Yuan, J. Sun, Z. Liu, X. Zheng, Z. Zhang, Energ. Environ. Sci. 2023, 16, 5284.

[15]

A. Nimkar, M. S. Chae, S. Wee, G. Bergman, B. Gavriel, M. Turgeman, F. Malchik, M. D. Levi, D. Sharon, M. R. Lukatskaya, ACS Energy Lett. 2022, 7, 4161.

[16]

S. Bi, Y. Zhang, S. Deng, Z. Tie, Z. Niu, Angew. Chem. Int. Ed. 2022, 61, e202200809.

[17]

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.

[18]

G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.-F. Drillet, S. Passerini, R. Hahn, Adv. Mater. 2016, 28, 7564.

[19]

J. Tu, W. L. Song, H. Lei, Z. Yu, L. L. Chen, M. Wang, S. Jiao, Chem. Rev. 2021, 121, 4903.

[20]

Q. Yang, X. Qu, H. Cui, X. He, Y. Shao, Y. Zhang, X. Guo, A. Chen, Z. Chen, R. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202206471.

[21]

S. Bi, S. Wang, F. Yue, Z. Tie, Z. Niu, Nat. Commun. 2021, 12, 6991.

[22]

A. Nimkar, K. Alam, G. Bergman, M. D. Levi, D. T. Major, N. Shpigel, D. Aurbach, Angew. Chem. Int. Ed. 2023, 135, e202311373.

[23]

S. Zhou, X. Meng, Y. Chen, J. Li, S. Lin, C. Han, X. Ji, Z. Chang, A. Pan, Angew. Chem. Int. Ed. 2024, 136, e202403050.

[24]

Z. Cheng, Q. Dong, G. Pu, J. Song, W. Zhong, J. Wang, Small 2024, 20, 2400389.

[25]

A. Nimkar, G. Bergman, E. Ballas, N. Tubul, N. Levi, F. Malchik, I. Kukurayeve, M. S. Chae, D. Sharon, M. Levi, Angew. Chem. 2023, 135, e202306904.

[26]

M. S. Chae, A. Nimkar, N. Shpigel, Y. Gofer, D. Aurbach, ACS Energy Lett. 2021, 6, 2659.

[27]

I. A. Rodríguez-Pérez, Z. Jian, P. K. Waldenmaier, J. W. Palmisano, R. S. Chandrabose, X. Wang, M. M. Lerner, R. G. Carter, X. Ji, ACS Energy Lett. 2016, 1, 719.

[28]

Y. Feng, N. Ran, X. Wang, Q. Liu, J. Wang, L. Liu, K. Suenaga, W. Zhong, R. Ma, J. Liu, Adv. Energy Mater. 2023, 13, 2302452.

[29]

X. Wang, R. Ma, S. Li, M. Xu, L. Liu, Y. Feng, T. Thomas, M. Yang, J. Wang, Adv. Energy Mater. 2023, 13, 2300765.

[30]

D. Shen, X. Zheng, R. Luo, T. Jiang, M. Wang, M. Zhang, Q. Peng, L. Song, S. Zhou, Z. Hou, Y. Qian, W. Chen, Joule 2024, 8, 780.

Energy & Environmental Materials
Cite this article:
Lee H, Nimkar A, Lee H, et al. New Mn Electrochemistry for Rechargeable Aqueous Batteries: Promising Directions Based on Preliminary Results. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12823
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return