PDF (3.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics

Dong Il Kim1Hee Bin Jeong2Jungmoon Lim3Hyeong Seop Jeong2Min Kyeong Kim1Sangyeon Pak4Sanghyo Lee5Geon-Hyoung An6Sang-Soo Chee7Jin Pyo Hong1,8()SeungNam Cha3()John Hong2 ()
Department of Physics, Research Institute for Natural Science, Hanyang University, Seoul 04763, South Korea
School of Materials Science and Engineering, Kookmin University, Seoul 02707, South Korea
Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, South Korea
Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongsangbuk-do 39177, South Korea
Department of Energy Engineering, Gyeongsang National University, Jinju, Gyeongnam-do 52725, Korea
Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Korea
Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 04763, South Korea
Show Author Information

Abstract

Achieving high-performance aqueous zinc-ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h-BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h-BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h-BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α-MnO2 cathode, increased H+ ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h-BN on the zinc anode. This shift in H+ ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g−1. This study highlights the crucial role of surface modification, and the innovative use of bulk h-BN provides a practical and effective solution for improving the performance and stability.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12826_ESM.docx (5 MB)

References

[1]

C. Han, W. Li, H. K. Liu, S. Dou, J. Wang, Nano Energy 2020, 74, 104880.

[2]

M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[3]

J. Ming, J. Guo, C. Xia, W. Wang, H. N. Alshareef, Mater. Sci. Eng. R 2019, 135, 58.

[4]

B. Tang, L. Shan, S. Liang, J. Zhou, Energ. Environ. Sci. 2019, 12, 3288.

[5]

Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 2021, 11, 2003065.

[6]

B. Li, X. Zhang, T. Wang, Z. He, B. Lu, S. Liang, J. Zhou, Nanomicro Lett. 2022, 14(6), 1.

[7]

Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.

[8]

J. Ballesteros, P. Díaz-Arista, Y. Meas, R. Ortega, G. Trejo, Electrochim. Acta 2007, 52, 3686.

[9]

G. Cassabois, P. Valvin, B. Gil, Nat. Photonics 2016, 10, 262.

[10]

H. Jia, M. Qiu, C. Tang, H. Liu, S. Fu, X. Zhang, EcoMat 2022, 4, e12190.

[11]

M. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, Energy Storage Mater. 2022, 45, 1175.

[12]

Q. Song, J. Liang, S. Liu, Y. Zhang, J. Zhu, C. Zhu, Nano Res. 2023, 16, 403.

[13]

H. Wong, T. W. Tang, H. Chen, M. Xu, J. Wang, Y. Cai, W. A. Goddard, Z. Luo, J. Mater. Chem. A 2024, 12, 4195.

[14]

Y. Shi, S. Yuan, B. Ter-Ovanessian, K. Hermange, Y. Huo, B. Normand, Appl. Surf. Sci. 2021, 544, 148849.

[15]

Z. Yang, C. Lv, W. Li, T. Wu, Q. Zhang, Y. Tang, M. Shao, H. Wang, Small 2022, 18, 2104148.

[16]

X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou, X. Ji, Small 2020, 16, 1905842.

[17]

W. G. Lim, X. Li, D. Reed, Small Methods 2023, 8, 2300965.

[18]

H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 2016, 1(5), 1.

[19]

S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao, L. Chen, D. G. Ivey, Y. Deng, W. Wei, J. Mater. Chem. A 2018, 6, 5733.

[20]

S. D. Pu, C. Gong, Y. T. Tang, Z. Ning, J. Liu, S. Zhang, Y. Yuan, D. Melvin, S. Yang, L. Pi, Adv. Mater. 2022, 34, 2202552.

[21]

A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012.

[22]

Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang, Y. Zhang, H. Wang, Y. Cao, A. Chen, J. Sun, Small 2022, 18, 2105978.

[23]

M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, Adv. Mater. 2021, 33, 2100187.

[24]

Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energ. Environ. Sci. 2021, 14, 3609.

[25]

Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energ. Environ. Sci. 2019, 12, 1938.

[26]

P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.

[27]

Q. Li, A. Chen, D. H. Wang, Z. X. Pei, C. Zhi, Joule 2022, 6, 273.

[28]

Y. Cheng, Y. Jiao, P. Wu, Energ. Environ. Sci. 2023, 16, 4561.

[29]

Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Sci. 2022, 9, 2104832.

[30]

Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu, X. Song, Y. Ma, H. Xiang, Y. Huang, ACS Energy Lett. 2022, 8, 372.

[31]

L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.

[32]

W. Liu, X. Li, Y. Wang, D. Yang, Z. Guo, M. Liu, J. Wang, J. Energy Chem. 2023, 81, 339.

[33]

X. Yang, J. Cheng, H. Li, Y. Xu, W. Sun, W. Tu, J. Zhou, Appl. Surf. Sci. 2023, 627, 157284.

[34]

D. Zhao, S. Xu, T. Kong, Z. Li, M. Zhang, Y. Miao, Z. Feng, J. Qi, F. Wei, Q. Meng, J. Alloys Compd. 2023, 968, 172200.

[35]

N. K. Onkarappa, J. C. A. Satyanarayana, H. Suresh, P. Malingappa, Surf. Coat Tech. 2020, 397, 126062.

[36]

Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13180.

[37]

M. Wang, C. Cao, F. Su, Y. Wang, L. Liu, W. Wang, W. Zhang, H. Shen, J. Zhang, Electrochim. Acta 2022, 403, 139699.

[38]

H. Liu, C. Li, H. Zhang, L. Fu, Y. Wu, H. Wu, J. Power Sources 2006, 159, 717.

[39]

J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang, Y. Tang, X. Liu, C. C. Li, Adv. Funct. Mater. 2023, 34, 2312564.

[40]

T. Wu, W. Lin, Electrochim. Acta 2021, 394, 139134.

[41]

M. Zhang, H. Hua, P. Dai, Z. He, L. Han, P. Tang, J. Yang, P. Lin, Y. Zhang, D. Zhan, Adv. Mater. 2023, 35, 2208630.

[42]

X. Guo, J. Zhou, C. Bai, X. Li, G. Fang, S. Liang, Mater. Today Energy 2020, 16, 100396.

Energy & Environmental Materials
Cite this article:
Kim DI, Jeong HB, Lim J, et al. A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12826
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return