PDF (1.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Accelerating Lithium Deposition Kinetics Via Lithiophilic Ag-Decorated Graphitic Carbon Nitride Spheres for Stable Lithium Metal Anode

Hyojun Lim1,2Minsu Choi3Haeun Kang3Wonchang Choi3 ()
Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
Department of Nuclear Science and Engineering and Department of Material Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge 02139, Massachusetts, USA
Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
Show Author Information

Abstract

This study presents a novel Li metal host material with a unique hollow nano-spherical structure that incorporates Ag nano-seeds into a graphitic carbon nitride (g-C3N4) shell layer, referred to as g-C3N4@Ag hollow spheres. The g-C3N4@Ag spheres provide a managed internal site for Li metal encapsulation and promote stable Li plating. The g-C3N4 spheres are uniformly coated using polydopamine, which has an adhesive nature, to enhance lithium plating/stripping stability. The strategic presence of Ag nano-seeds eliminates the nucleation barrier, properly directing Li growth within the hollow spheres. This design facilitates highly reversible and consistent lithium deposition, offering a promising direction for the production of high-performance lithium metal anodes. These well-designed g-C3N4@Ag hollow spheres ensure stable Li plating/stripping kinetics over more than 500 cycles with a high coulombic efficiency of over 97%. Furthermore, a full cell made using LiNi0.90Co0.07Mn0.03O2 and Li-g-C3N4@Ag host electrodes demonstrated highly competitive performance over 200 cycles, providing a guide for the implementation of this technology in advanced lithium metal batteries.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12830_ESM.docx (4.3 MB)

References

[1]

F. Degen, M. Winter, D. Bendig, J. Tübke, Nat. Energy 2023, 8, 1284.

[2]

H. Li, A. Berbille, X. Zhao, Z. Wang, W. Tang, Z. L. Wang, Nat. Energy 2023, 8, 1137.

[3]

S. Kim, G. Park, S. J. Lee, S. Seo, K. Ryu, C. H. Kim, J. W. Choi, Adv. Mater. 2023, 35, 2206625.

[4]

B. Acebedo, M. C. Morant-Miñana, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde, J. Rikarte, L. Fallarino, Adv. Energy Mater. 2023, 13, 2203744.

[5]

S. Zhang, Y. Li, L. J. Bannenberg, M. Liu, S. Ganapathy, M. Wagemaker, Sci. Adv. 2024, 10, eadj8889.

[6]

Q. Wang, B. Liu, Y. Shen, J. Wu, Z. Zhao, C. Zhong, W. Hu, Adv. Sci. 2021, 8, 2101111.

[7]

K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, DOI: 10.1038/nenergy.2016.10

[8]

Y. Liu, Y. Zhai, Y. Xia, W. Li, D. Zhao, Small Struct. 2021, 2, 2000118.

[9]

Y. Wang, J. Tan, Z. Li, L. Ma, Z. Liu, M. Ye, J. Shen, Energy Storage Mater. 2022, 53, 156.

[10]

R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, Nat. Commun. 2020, 11, 93.

[11]

X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, Energy Storage Mater. 2018, 14, 335.

[12]

R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. 2017, 129, 7872.

[13]

J. Y. Maeng, M. Bae, Y. Kim, D. Kim, Y. Chang, S. Park, J. Choi, E. Lee, J. Lee, Y. Piao, J. Mater. Chem. A 2024, 12, 1058.

[14]

Z. Piao, R. Gao, Y. Liu, G. Zhou, H. M. Cheng, Adv. Mater. 2023, 35, 2206009.

[15]

A. Mathew, M. J. Lacey, D. Brandell, J. Power Sources Adv. 2021, 11, 100071.

[16]

A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, ACS Appl. Energy Mater. 2020, 3, 10560.

[17]

X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, Q. Zhang, Adv. Sci. 2016, 3, 1500213.

[18]

J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, Nat. Energy 2020, 5, 561.

[19]

J. Zhu, J. Chen, Y. Luo, S. Sun, L. Qin, H. Xu, P. Zhang, W. Zhang, W. Tian, Z. Sun, Energy Storage Mater. 2019, 23, 539.

[20]

X. He, K. Zhang, Z. Zhu, Z. Tong, X. Liang, Chem. Soc. Rev. 2024, 53, 9.

[21]

W. Chen, S. Li, C. Wang, H. Dou, X. Zhang, Energy Environ. Mater. 2023, 6, e12412.

[22]

S. Cho, D. Y. Kim, J. I. Lee, J. Kang, H. Lee, G. Kim, D. H. Seo, S. Park, Adv. Funct. Mater. 2022, 32, 2208629.

[23]

J. Jeong, J. Chun, W.-G. Lim, W. B. Kim, C. Jo, J. Lee, Nanoscale 2020, 12, 11818.

[24]

H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá, H. Wang, D. Mackanic, H.-G. Steinrück, W. Huang, Y. Li, Joule 2020, 4, 938.

[25]

M. Kim, S. Lee, D. Park, H. Kang, D. Kam, J.-H. Park, S. H. Oh, H.-G. Jung, W. Choi, ACS Sustain. Chem. Eng. 2023, 11, 1785.

[26]

K. Baek, W.-G. Lee, E. Im, J. H. Ha, S. Ahn, Y. Kim, Y. Choi, S. J. Kang, Nano Lett. 2023, 23, 8515.

[27]

Q. Wu, M. Qin, H. Yan, W. Zhong, W. Zhang, M. Liu, S. Cheng, J. Xie, ACS Appl. Mater. Interfaces 2022, 14, 42030.

[28]

H. J. Choi, D. W. Kang, J. W. Park, J. H. Park, Y. J. Lee, Y. C. Ha, S. M. Lee, S. Y. Yoon, B. G. Kim, Adv. Sci. 2022, 9, 2103826.

[29]

J. Wu, L. Tian, H. Duan, Y. Cheng, L. Shi, ACS Appl. Mater. Interfaces 2021, 13, 46821.

[30]

X. Luan, C. Wang, C. Wang, X. Gu, J. Yang, Y. Qian, ACS Appl. Mater. Interfaces 2020, 12, 11265.

[31]

H. Wang, Q. Lin, L. Yin, Y. Yang, Y. Qiu, C. Lu, H. Yang, Small 2019, 15, 1900011.

[32]

Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li, T. Zhai, H. Li, Y. Cui, Adv. Mater. 2019, 31, 1900342.

[33]

S. Lee, J. Park, E. Seok, M. Kim, M. Ku, H. Lim, S. O. Kim, H. Jung, W. Choi, Int. J. Energy Res. 2022, 46, 15276.

[34]

H. Kim, H. Lim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, Nano Res. 2018, DOI: 10.1007/s12274-018-2229-z.

[35]

J. E. M. Porcel, M. B. R. Aiello, V. B. Arce, D. Di Silvio, S. E. Moya, D. O. Mártire, New J. Chem. 2019, 43, 9123.

[36]

P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, Y. Fu, J. Mater. Chem. A 2015, 3, 24237.

[37]

D.-W. Jung, J. M. Kim, H. J. Yun, G.-R. Yi, J. Y. Cho, H. Jung, G. Lee, W.-S. Chae, K. M. Nam, RSC Adv. 2019, 9, 29232.

[38]

S. Sarkar, R. Das, Micro Nano Lett. 2018, 13, 312.

[39]

Y. Wang, R. Zhao, F. Wang, Y. Liu, X. Yu, L. Chen, Y. Yao, S. Lu, X. Liao, Cat. Sci. Technol. 2020, 10, 7652.

[40]

P. Barman, A. Deka, S. Bhattacharyya, J. Phys. D. Appl. Phys. 2021, 54, 275301.

[41]

N. Hellgren, R. T. Haasch, S. Schmidt, L. Hultman, I. Petrov, Carbon 2016, 108, 242.

[42]

H. Wang, M. Thangamuthu, Z. Wu, J. Yang, H. Yuan, M. K. Bayazit, J. Tang, Chem. Eng. J. 2022, 445, 136790.

[43]

S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin, J. Wang, Z. Sun, A. Cao, X. Wu, Y. Luo, J. Am. Chem. Soc. 2020, 142, 8818.

[44]

Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. Wu, Energy Environ. Sci. 2017, 10, 580.

[45]

F. Lindgren, C. Xu, L. Niedzicki, M. Marcinek, T. Gustafsson, F. Bjorefors, K. Edstrom, R. Younesi, ACS Appl. Mater. Interfaces 2016, 8, 15758.

[46]

Y. Jeon, S. Kang, S. H. Joo, M. Cho, S. O. Park, N. Liu, S. K. Kwak, H.-W. Lee, H.-K. Song, Energy Storage Mater. 2020, 31, 505.

[47]

A. B. Oskouyi, U. Sundararaj, P. Mertiny, Materials 2014, 7, 2501.

[48]

W. Guan, T. Wang, Y. Liu, H. Du, S. Li, Z. Du, W. Ai, Adv. Energy Mater. 2023, 13, 2302565.

[49]

D. Zhang, A. Dai, M. Wu, K. Shen, T. Xiao, G. Hou, J. Lu, Y. Tang, ACS Energy Lett. 2019, 5, 180.

[50]

W. Cao, Q. Li, X. Yu, H. Li, eScience 2022, 2, 47.

[51]

X. Lin, S. Du, C. Li, G. Li, Y. Li, F. Chen, P. Fang, Catal. Lett. 2020, 150, 1898.

[52]

X.-R. Chen, X. Chen, C. Yan, X.-Q. Zhang, Q. Zhang, J.-Q. Huang, Energy Fuel 2021, 35, 12746.

[53]

Q. Sun, W. Zhai, G. Hou, J. Feng, L. Zhang, P. Si, S. Guo, L. Ci, ACS Sustain. Chem. Eng. 2018, 6, 15219.

[54]

Y. Liu, X. Wu, C. Niu, W. Xu, X. Cao, J. G. Zhang, X. Jiang, J. Xiao, J. Yang, M. S. Whittingham, J. Liu, ACS Energy Lett. 2021, 6, 1550.

[55]

Y. Yan, J. Sun, Y. Zhang, W. Liu, Y. J. Wang, H. Q. Yang, C. J. Li, J. Zhang, Inorg. Chem. Front. 2023, 10, 3899.

Energy & Environmental Materials
Cite this article:
Lim H, Choi M, Kang H, et al. Accelerating Lithium Deposition Kinetics Via Lithiophilic Ag-Decorated Graphitic Carbon Nitride Spheres for Stable Lithium Metal Anode. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12830
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return