PDF (6.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Elucidating the Limit of Lithium Difluorophosphate Electrolyte Additive for High-Voltage Li/Mn-Rich Layered Oxide || Graphite Li Ion Batteries

Anindityo Arifiadi1,2Feleke Demelash1Tobias Brake1Christian Lechtenfeld1Sven Klein1Lennart Alsheimer1Simon Wiemers-Meyer1Martin Winter1,3Johannes Kasnatscheew1 ()
MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstr. 46, 48149, Münster, Germany
International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149, Münster, Germany
Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149, Münster, Germany
Show Author Information

Abstract

Li/Mn-rich layered oxide (LMR) cathode active materials offer remarkably high specific discharge capacity (>250 mAh g−1) from both cationic and anionic redox. The latter necessitates harsh charging conditions to high cathode potentials (>4.5 V vs Li|Li+), which is accompanied by lattice oxygen release, phase transformation, voltage fade, and transition metal (TM) dissolution. In cells with graphite anode, TM dissolution is particularly detrimental as it initiates electrode crosstalk. Lithium difluorophosphate (LiDFP) is known for its pivotal role in suppressing electrode crosstalk through TM scavenging. In LMR || graphite cells charged to an upper cutoff voltage (UCV) of 4.5 V, effective TM scavenging effects of LiDFP are observed. In contrast, for an UCV of 4.7 V, the scavenging effects are limited due to more severe TM dissolution compared an UCV of 4.5 V. Given the saturation in solubility of the TM scavenging agents, which are LiDFP decomposition products, e.g., PO43− and PO3F2−, higher concentrations of the LiDFP as “precursor” cannot enhance the amount of scavenging species, they rather start to precipitate and damage the anode.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12835_ESM.docx (4.4 MB)

References

[1]

W. Zuo, M. Luo, X. Liu, J. Wu, H. Liu, J. Li, M. Winter, R. Fu, W. Yang, Y. Yang, Energy Environ. Sci. 2020, 13, 4450.

[2]

J. Helbig, T. Beuse, V. Siozios, T. Placke, M. Winter, R. Schmuch, J. Electrochem. Soc. 2020, 167, 60519.

[3]

G. Assat, J.-M. Tarascon, Nat. Energy 2018, 3, 373.

[4]

W. E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes, S.-J. Ahn, K. H. Stone, M. McIntire, J. Hong, J. H. Song, Y. Li, A. Mehta, S. Ermon, T. Tyliszczak, D. Kilcoyne, D. Vine, J.-H. Park, S.-K. Doo, M. F. Toney, W. Yang, D. Prendergast, W. C. Chueh, Nat. Commun. 2017, 8, 2091.

[5]

K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684.

[6]

M. Oishi, C. Yogi, I. Watanabe, T. Ohta, Y. Orikasa, Y. Uchimoto, Z. Ogumi, J. Power Sources 2015, 276, 89.

[7]

R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 2020, 5, 777.

[8]

E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H. L. Xin, C. Jaye, D. A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 2018, 3, 690.

[9]

D. Mohanty, J. Li, D. P. Abraham, A. Huq, E. A. Payzant, D. L. Wood, C. Daniel, Chem. Mater. 2014, 26, 6272.

[10]

S. Klein, P. Bärmann, T. Beuse, K. Borzutzki, J. E. Frerichs, J. Kasnatscheew, M. Winter, T. Placke, ChemSusChem 2021, 14, 595.

[11]

W. Li, U.-H. Kim, A. Dolocan, Y.-K. Sun, A. Manthiram, ACS Nano 2017, 11, 5853.

[12]

S. Klein, P. Bärmann, L. Stolz, K. Borzutzki, J.-P. Schmiegel, M. Börner, M. Winter, T. Placke, J. Kasnatscheew, ACS Appl. Mater. Interfaces 2021, 13, 57241.

[13]

S. Klein, L. Haneke, P. Harte, L. Stolz, S. van Wickeren, K. Borzutzki, S. Nowak, M. Winter, T. Placke, J. Kasnatscheew, ChemElectroChem 2022, 9, e202200469.

[14]

J. Liu, Z. Wu, M. Yu, H. Hu, Y. Zhang, K. Zhang, Z. Du, F. Cheng, J. Chen, Small 2022, 18, e2106337.

[15]

Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, Y. S. Meng, Adv. Energy Mater. 2022, 12, 2103033.

[16]

F. Cheng, J. Xu, P. Wei, Z. Cheng, M. Liao, S. Sun, Y. Xu, Q. Li, C. Fang, Y. Lin, J. Han, Y. Huang, Adv. Sci. 2023, 10, e2206714.

[17]

S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang, R. Lin, A. Cresce, J. Hu, A. Hunt, I. Waluyo, L. Ma, F. Monaco, P. Cloetens, J. Xiao, Y. Liu, X.-Q. Yang, K. Xu, E. Hu, Nat. Energy 2022, 7, 484.

[18]

H. Chen, K. Chen, L. Luo, X. Liu, Z. Wang, A. Zhao, H. Li, X. Ai, Y. Fang, Y. Cao, Angew. Chem. Int. Ed. 2024, 63, e202316966.

[19]

K. Chen, X. Shen, L. Luo, H. Chen, R. Cao, X. Feng, W. Chen, Y. Fang, Y. Cao, Angew. Chem. Int. Ed. 2023, 62, e202312373.

[20]

L. Luo, K. Chen, H. Chen, H. Li, R. Cao, X. Feng, W. Chen, Y. Fang, Y. Cao, Adv. Mater. 2024, 36, e2308881.

[21]

R. S. Arumugam, L. Ma, J. Li, X. Xia, J. M. Paulsen, J. R. Dahn, J. Electrochem. Soc. 2016, 163, A2531.

[22]

R. Väli, S. Aftanas, A. Eldesoky, A. Liu, T. Taskovic, J. E. Harlow, J. deGooyer, N. Phattharasupakun, D. Ouyang, D. Rathore, M. M. E. Cormier, M. B. Johnson, H. Nguyen, H. Kwak, S. Kumakura, J. Paulsen, J. R. Dahn, J. Electrochem. Soc. 2022, 169, 60530.

[23]

C. Wang, Y. Le, W. Fan, J. Liu, L. Ouyang, L. Yang, M. Zhu, ACS Appl. Energy Mater. 2018, 1, 2647.

[24]

A. Wang, L. Wang, H. Liang, Y. Song, Y. He, Y. Wu, D. Ren, B. Zhang, X. He, Adv. Funct. Mater. 2023, 33, 2211958.

[25]

S. Klein, P. Harte, S. van Wickeren, K. Borzutzki, S. Röser, P. Bärmann, S. Nowak, M. Winter, T. Placke, J. Kasnatscheew, Cell Rep. Phys. Sci. 2021, 2, 100521.

[26]

H. Wan, J. Xu, C. Wang, Nat. Rev. Chem. 2023, 8, 30.

[27]

A. Arifiadi, T. Brake, F. Demelash, B. Ying, K. Kleiner, H. Hur, S. Wiemers-Meyer, M. Winter, J. Kasnatscheew, Adv. Energy. Sustain. Res. 2024, 5, 2400129.

[28]

G. Yang, J. Shi, C. Shen, S. Wang, L. Xia, H. Hu, H. Luo, Y. Xia, Z. Liu, RSC Adv. 2017, 7, 26052.

[29]

G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.-M. Tarascon, Nat. Commun. 2017, 8, 2219.

[30]

H. Hantsche, Adv. Mater. 1993, 5, 944.

[31]

M. Liu, J. Vatamanu, X. Chen, L. Xing, K. Xu, W. Li, ACS Energy Lett. 2021, 6, 2096.

[32]

D. Strmcnik, I. E. Castelli, J. G. Connell, D. Haering, M. Zorko, P. Martins, P. P. Lopes, B. Genorio, T. Østergaard, H. A. Gasteiger, F. Maglia, B. K. Antonopoulos, V. R. Stamenkovic, J. Rossmeisl, N. M. Markovic, Nat. Catal. 2018, 1, 255.

[33]

W. Lange, R. Livingston, J. Am. Chem. Soc. 1947, 69, 1073.

[34]

L. N. Devonshire, H. H. Rowley, Inorg. Chem. 1962, 1, 680.

[35]

S. Wiemers-Meyer, M. Winter, S. Nowak, Phys. Chem. Chem. Phys. 2016, 18, 26595.

[36]

S. Klein, S. van Wickeren, S. Röser, P. Bärmann, K. Borzutzki, B. Heidrich, M. Börner, M. Winter, T. Placke, J. Kasnatscheew, Adv. Energy Mater. 2021, 11, 2003738.

[37]

S. Klein, P. Harte, J. Henschel, P. Bärmann, K. Borzutzki, T. Beuse, S. van Wickeren, B. Heidrich, J. Kasnatscheew, S. Nowak, M. Winter, T. Placke, Adv. Energy Mater. 2021, 11, 2003756.

[38]

S. Klein, J. M. Wrogemann, S. van Wickeren, P. Harte, P. Bärmann, B. Heidrich, J. Hesper, K. Borzutzki, S. Nowak, M. Börner, M. Winter, J. Kasnatscheew, T. Placke, Adv. Energy Mater. 2022, 12, 2102599.

[39]

J. Henschel, C. Peschel, S. Klein, F. Horsthemke, M. Winter, S. Nowak, Angew. Chem. Int. Ed. 2020, 59, 6128.

[40]

J. Xia, R. Petibon, D. Xiong, L. Ma, J. R. Dahn, J. Power Sources 2016, 328, 124.

[41]

W. M. Dose, W. Li, I. Temprano, C. A. O’Keefe, B. L. Mehdi, M. F. L. de Volder, C. P. Grey, ACS Energy Lett. 2022, 7, 3524.

[42]

R. Sahore, D. C. O’Hanlon, A. Tornheim, C.-W. Lee, J. C. Garcia, H. Iddir, M. Balasubramanian, I. Bloom, J. Electrochem. Soc. 2020, 167, 20513.

[43]

L. D. Ellis, J. Xia, A. J. Louli, J. R. Dahn, J. Electrochem. Soc. 2016, 163, A1686.

[44]

X. Bian, S. Ge, Q. Pang, K. Zhu, Y. Wei, B. Zou, F. Du, D. Zhang, G. Chen, J. Alloys Compd. 2018, 736, 136.

[45]

Q. Dong, F. Guo, Z. Cheng, Y. Mao, R. Huang, F. Li, H. Dong, Q. Zhang, W. Li, H. Chen, Z. Luo, Y. Shen, X. Wu, L. Chen, ACS Appl. Energy Mater. 2020, 3, 695.

[46]

M. D. Bhatt, C. O’Dwyer, Chem. Phys. Lett. 2015, 618, 208.

[47]

D. Luo, H. Zhu, Y. Xia, Z. Yin, Y. Qin, T. Li, Q. Zhang, L. Gu, Y. Peng, J. Zhang, K. M. Wiaderek, Y. Huang, T. Yang, Y. Tang, S. Lan, Y. Ren, W. Lu, C. M. Wolverton, Q. Liu, Nat. Energy 2023, 8, 1078.

[48]

F. Demelash, A. Gomez-Martin, B. Heidrich, E. Adhitama, P. Harte, A. Javed, A. Arifiadi, M. M. Bela, P. Yan, D. Diddens, M. Winter, P. Niehoff, Small Struct. 2024, 5, 2400063.

[49]

C.-C. Su, M. He, P. C. Redfern, L. A. Curtiss, I. A. Shkrob, Z. Zhang, Energy Environ. Sci. 2017, 10, 900.

[50]

Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, Energy Environ. Sci. 2013, 6, 1806.

[51]

Z. Yu, W. Yu, Y. Chen, L. Mondonico, X. Xiao, Y. Zheng, F. Liu, S. T. Hung, Y. Cui, Z. Bao, J. Electrochem. Soc. 2022, 169, 40555.

[52]

R. A. House, U. Maitra, M. A. Pérez-Osorio, J. G. Lozano, L. Jin, J. W. Somerville, L. C. Duda, A. Nag, A. Walters, K.-J. Zhou, M. R. Roberts, P. G. Bruce, Nature 2020, 577, 502.

[53]

D. Eum, B. Kim, S. J. Kim, H. Park, J. Wu, S.-P. Cho, G. Yoon, M. H. Lee, S.-K. Jung, W. Yang, W. M. Seong, K. Ku, O. Tamwattana, S. K. Park, I. Hwang, K. Kang, Nat. Mater. 2020, 19, 419.

[54]

A. Gomez-Martin, F. Reissig, L. Frankenstein, M. Heidbüchel, M. Winter, T. Placke, R. Schmuch, Adv. Energy Mater. 2022, 12, 2103045.

[55]

R. Nölle, K. Beltrop, F. Holtstiege, J. Kasnatscheew, T. Placke, M. Winter, Mater. Today 2020, 32, 131.

Energy & Environmental Materials
Cite this article:
Arifiadi A, Demelash F, Brake T, et al. Elucidating the Limit of Lithium Difluorophosphate Electrolyte Additive for High-Voltage Li/Mn-Rich Layered Oxide || Graphite Li Ion Batteries. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12835
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return