PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

In-Situ Constructing a Mixed-Conductive Interfacial Protective Layer for Ultra-Stable Lithium Metal Anodes

Liansheng Li1Yijie Zhang1,2Zuxin Long1Pengyu Meng1Qinghua Liang1,2()
Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Abstract

Lithium metal batteries are the most promising next-generation energy storage technologies due to their high energy density. However, their practical application is impeded by serious interfacial side reactions and uncontrolled dendrite growth of lithium metal anode. Herein, copper 2,4,5-trifluorophenylacetate is designed and explored to stabilize lithium metal anode by in-situ constructing a dense and mixed-conductive interfacial protective layer. The formed passivated layer not only significantly inhibits interfacial side reactions by avoiding direct contact between lithium metal anode and electrolyte but also effectively suppresses lithium dendrite growth due to the unique inorganic-rich compositions and mixed-conductive properties. As a result, the copper 2,4,5-trifluorophenylacetate-treated lithium metal anodes show greatly improved cycle stability under both high current density and high areal deposition capacity. Notably, the assembled liquid symmetrical cells with copper 2,4,5-trifluorophenylacetate-treated lithium metal anodes can stably work for more than 3000, 5000, and 4800 h at 1.0 mA cm−2–1.0 mAh cm−2, 2.0 mA cm−2–5.0 mAh cm−2, and 10 mA cm−2–5.0 mAh cm−2, respectively. Furthermore, the assembled liquid full cell with a high LiFePO4 loading (~16.9 mg cm−2) shows a significantly enhanced cycle life of 250 cycles with stable Coulombic efficiencies (>99.1%). Moreover, the assembled all-solid-state lithium metal battery with a high LiNi0.6Co0.2Mn0.2O2 loading (~5.0 mg cm−2) also exhibits improved cycle stability. These findings underline that the copper 2,4,5-trifluorophenylacetate-treated lithium metal anodes show great promise for high-performance lithium metal batteries.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12836_ESM.docx (9.3 MB)

References

[1]

S. Zhang, R. Li, N. Hu, T. Deng, S. Weng, Z. Wu, D. Lu, H. Zhang, J. Zhang, X. Wang, L. Chen, L. Fan, X. Fan, Nat. Commun. 2022, 13, 5431.

[2]

X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J. B. Goodenough, Nat. Commun. 2019, 10, 900.

[3]

K. Baek, W. G. Lee, E. Im, J. H. Ha, S. Ahn, Y. Kim, Y. Choi, S. J. Kang, Nano Lett. 2023, 23, 8515.

[4]

T. Ding, D. Zheng, H. Qu, W. Ji, X. Zhang, D. Lu, G. Wang, D. Qu, J. Power Sources 2024, 589, 233746.

[5]

Z. Wang, Z. Du, Y. Liu, C. E. Knapp, Y. Dai, J. Li, W. Zhang, R. Chen, F. Guo, W. Zong, X. Gao, J. Zhu, C. Wei, G. He, eScience 2024, 4, 100189.

[6]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energ. Environ. Sci. 2014, 7, 513.

[7]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[8]

H. L. Xie, J. Y. Feng, H. L. Zhao, Energy Storage Mater. 2023, 61, 102918.

[9]

Q. Chang, Y. X. Angel Ng, D. Yang, J. Chen, T. Liang, S. Chen, X. Zhang, Z. Ou, J. Kim, E. H. Ang, H. Xiang, X. Song, ACS Mater. Lett. 2023, 5, 1506.

[10]

F. Shi, A. Pei, D. T. Boyle, J. Xie, X. Yu, X. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2018, 115, 8529.

[11]

J. G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Chem. Rev. 2020, 120, 13312.

[12]

O. B. Chae, B. L. Lucht, Adv. Energy Mater. 2023, 13, 2203791.

[13]

X. Yuan, B. Liu, M. Mecklenburg, Y. Li, Nature 2023, 620, 86.

[14]

X. Yao, X. Song, F. Zhang, J. Ma, H. Jiang, L. Wang, Y. Liu, E. Huixiang Ang, H. Xiang, ChemElectroChem 2022, 9, e202200390.

[15]

L. Li, Y. Deng, G. Chen, J. Energy Chem. 2020, 50, 154.

[16]

Z. Wu, S. He, C. Zheng, J. Gan, L. She, M. Zhang, Y. Gao, Y. Yang, H. Pan, eScience 2024, 4, 100247.

[17]

C. Ouyang, H. Zheng, Q. Chen, H. Liu, H. Duan, ACS Appl. Mater. Interfaces 2023, 15, 51179.

[18]

J. Y. Yoo, T. Y. Kim, D. M. Shin, Y. Kang, M. H. Wu, Y. C. Kang, D. Y. Kim, Adv. Funct. Mater. 2023, 33, 2308103.

[19]

Q. Zheng, Y. Song, W. B. Huang, J. Yang, T. Li, Y. Xu, Energy Storage Mater. 2023, 63, 103038.

[20]

H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Nature 2023, 623, 739.

[21]

L. S. Li, H. H. Duan, J. Li, L. Zhang, Y. F. Deng, G. H. Chen, Adv. Energy Mater. 2021, 11, 2003154.

[22]

Y. Zhong, X. Zhang, Y. Zhang, P. Jia, Y. Xi, L. Kang, Z. Yu, SusMat 2024, 4, e190.

[23]

Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Kang, A. Aspuru-Guzik, Y. S. Hu, M. Wagemaker, B. Li, Nat. Commun. 2020, 11, 4188.

[24]

Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526.

[25]

W. Xue, M. Huang, Y. Li, Y. G. Zhu, R. Gao, X. Xiao, W. Zhang, S. Li, G. Xu, Y. Yu, P. Li, J. Lopez, D. Yu, Y. Dong, W. Fan, Z. Shi, R. Xiong, C.-J. Sun, I. Hwang, W.-K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495.

[26]

Z. Li, L. Yu, C. X. Bi, X. Y. Li, J. Ma, X. Chen, X. Q. Zhang, A. Chen, H. Chen, Z. Zhang, L. Z. Fan, B. Q. Li, C. Tang, Q. Zhang, SusMat 2024, 4, e191.

[27]

R. Xu, X. Shen, X. X. Ma, C. Yan, X. Q. Zhang, X. Chen, J. F. Ding, J. Q. Huang, Angew. Chem. Int. Ed. 2021, 60, 4215.

[28]

J. Zhong, Z. Wang, X. Yi, X. Li, H. Guo, W. Peng, J. Wang, G. Yan, Small 2024, 20, e2308678.

[29]

S. Stuckenberg, M. M. Bela, C. T. Lechtenfeld, M. Mense, V. Kupers, T. T. K. Ingber, M. Winter, M. C. Stan, Small 2024, 20, e2305203.

[30]

H. Chen, Y. X. Xie, S. S. Liu, H. Peng, W. C. Zheng, P. Dai, Y. X. Huang, M. Sun, M. Lin, L. Huang, S. G. Sun, ACS Appl. Mater. Interfaces 2023, 15, 45834.

[31]

T. Hu, Y. X. Guo, Y. X. Meng, Z. Zhang, J. Yu, J. X. Cai, Z. Y. Yang, Chin. Chem. Lett. 2024, 35, 108603.

[32]

S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, e1706102.

[33]

N. Piao, X. Ji, H. Xu, X. Fan, L. Chen, S. Liu, M. N. Garaga, S. G. Greenbaum, L. Wang, C. Wang, X. He, Adv. Energy Mater. 2020, 10, 1903568.

[34]

C. Zhu, C. Sun, R. Li, S. Weng, L. Fan, X. Wang, L. Chen, M. Noked, X. Fan, ACS Energy Lett. 2022, 7, 1338.

[35]

Y. Liu, Y. Lin, Z. Yang, C. Lin, X. Zhang, S. Chen, G. Hu, B. Sa, Y. Chen, Y. Zhang, ACS Nano 2023, 17, 19625.

[36]

Y. He, Y. Zhang, Z. Wang, X. Li, Z. Lü, X. Huang, Z. Liu, Adv. Funct. Mater. 2021, 31, 2101737.

[37]

X. Hu, Y. Ma, J. Qian, W. Qu, Y. Li, R. Luo, H. Wang, A. Zhou, Y. Chen, K. Shi, L. Li, F. Wu, R. Chen, Adv. Mater. 2024, 36, e2303710.

[38]

X. J. Zhang, L. Zhou, K. P. Hu, D. D. Gao, S. Tang, L. He, Y. F. Chen, P. Zhang, Z. G. Zhang, Chem. Eng. J. 2023, 476, 146612.

[39]

Y. Y. Liu, S. Y. Wang, M. H. Sun, M. Ling, S. D. Zhou, C. D. Liang, J. Mater. Chem. A 2023, 11, 23961.

[40]

S. Zhang, J. Chen, C. Zhu, Q. Liu, Q. Li, R. Liu, X. Jiang, Y. Yan, S. Sun, L. Yin, R. Wang, ACS Nano 2023, 17, 24290.

[41]

H. Duan, C. H. Wang, R. Z. Yu, W. H. Li, J. M. Fu, X. F. Yang, X. T. Lin, M. T. Zheng, X. A. Li, S. X. Deng, X. G. Hao, R. Y. Li, J. T. Wang, H. Huang, X. L. Sun, Adv. Energy Mater. 2023, 13, 2300815.

[42]

Q. Ren, Q. Wang, L. Su, G. Liu, Y. Song, X. Shangguan, F. Li, J. Mater. Chem. A 2024, 12, 1072.

[43]

Z. Zhang, M. Zhang, J. Wu, X. Hu, B. Fu, X. Zhang, B. Luo, K. Khan, Z. Fang, Z. Xu, M. Wu, Small 2024, 20, e2304234.

[44]

T. Yang, W. Zhang, Y. Liu, J. Zheng, Y. Xia, X. Tao, Y. Wang, X. Xia, H. Huang, Y. Gan, X. He, J. Zhang, Small 2023, 19, e2303210.

[45]

J. Li, Y. Cai, F. Zhang, Y. Cui, W. Fang, H. Da, H. Zhang, S. Zhang, Nano Energy 2023, 118, 108985.

[46]

G. Yoon, S. Kim, J. S. Kim, Adv. Sci. 2023, 10, e2302263.

[47]

J. Luo, Q. Sun, J. W. Liang, K. Adair, F. P. Zhao, S. X. Deng, Y. Zhao, R. Y. Li, H. Huang, R. Yang, S. Q. Zhao, J. T. Wang, X. L. Sun, ACS Energy Lett. 2023, 8, 3676.

[48]

W. H. Kong, Z. Y. Jiang, Y. X. Liu, Q. Y. Han, L. X. Ding, S. Q. Wang, H. H. Wang, Adv. Funct. Mater. 2023, 33, 2306748.

[49]

Q. F. Gao, D. X. Wu, X. Zhu, P. S. Lu, T. H. Ma, M. Yang, L. Q. Chen, H. Li, F. Wu, Nano Energy 2023, 117, 108922.

[50]

C. Huang, S. Huang, A. L. Wang, Z. Y. Liu, D. X. Pei, J. H. Hong, S. Hou, L. Vitos, H. Y. Jin, J. Mater. Chem. A 2022, 10, 25500.

[51]

J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, J. Am. Chem. Soc. 2017, 139, 11550.

[52]

N. Li, K. Zhang, K. Xie, W. Wei, Y. Gao, M. Bai, Y. Gao, Q. Hou, C. Shen, Z. Xia, B. Wei, Adv. Mater. 2020, 32, e1907079.

[53]

L. Li, Y. Hu, H. Duan, Y. Deng, G. Chen, Small Methods 2023, 7, e2300314.

[54]

K. Wang, T. Zhao, R. X. Lv, W. M. Tang, T. Y. Yu, G. S. Chen, L. Li, F. Wu, R. J. Chen, Adv. Energy Mater. 2024, 14, 2401281.

[55]

L. Li, Y. Deng, H. Duan, Y. Qian, G. Chen, J. Energy Chem. 2022, 65, 319.

[56]

L. H. Zheng, R. X. Lv, C. Luo, Y. F. Guo, M. F. Yang, K. K. Hu, K. Wang, L. Li, F. Wu, R. J. Chen, Adv. Energy Mater. 2024, DOI: 10.1002/aenm.202402042.

[57]

Y. Fan, D. Kim, Y. Chen, D. Bi, Q. Han, Q. Cai, X. Hu, S. Mateti, B. Yu, Y. I. Chen, Adv. Energy Mater. 2024, 14, 2400933.

[58]

Z. H. Wang, J. Xue, Z. C. Song, J. X. Xing, A. J. Zhou, J. M. Ma, J. Z. Li, Chin. Chem. Lett. 2024, 35, 109489.

[59]

Y. X. Xie, Y. X. Huang, H. Chen, W. R. Lin, T. R. Wu, Y. Q. Wang, S. S. Liu, M. L. Sun, H. Y. Huang, P. Dai, Y. Ding, D. Y. Wu, C. Y. Ouyang, Y. H. Hong, X. Li, C. Y. Liu, S. J. Liao, L. Huang, S. G. Sun, Adv. Funct. Mater. 2024, 34, 2310867.

[60]

F. L. Chu, J. W. Zhou, J. M. Liu, F. C. Tang, L. B. Song, F. X. Wu, Nano Res. 2024, 17, 5148.

[61]

L. Yue, X. Wang, L. Chen, D. Shen, Z. Shao, H. Wu, S. Xiao, W. Liang, Y. Yu, Y. Li, Energ. Environ. Sci. 2024, 17, 1117.

[62]

H. D. Yao, F. Niu, C. J. Ma, X. Z. You, D. Ning, J. T. Qian, M. Wang, Q. E. Duan, C. Yang, Q. L. Wu, J. Wang, J. Zhang, Z. H. Lu, C. L. Yang, W. Wu, Adv. Funct. Mater. 2024, 34, 2310711.

[63]

L. Li, H. Duan, L. Zhang, Y. Deng, G. Chen, J. Mater. Chem. A 2022, 10, 20331.

[64]

L. Li, J. Wang, L. Zhang, H. Duan, Y. Deng, G. Chen, Energy Storage Mater. 2022, 45, 1062.

[65]

C. R. Li, C. W. Yang, T. R. Huang, Y. H. Wang, J. H. Yang, Y. Jiang, J. F. Mao, S. Y. Zheng, S. X. Xia, Adv. Funct. Mater. 2024, 34, 2407149.

[66]

F. Zhu, L. Xu, X. Hu, M. Yang, H. Liu, C. Gan, W. Deng, G. Zou, H. Hou, X. Ji, Angew. Chem. Int. Ed. 2024, 63, e202410016.

[67]

J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.

[68]

X. Zheng, Y. Xie, F. Tian, D. Lei, C. Wang, Energy Mater. Dev. 2024, 2, 9370032.

Energy & Environmental Materials
Cite this article:
Li L, Zhang Y, Long Z, et al. In-Situ Constructing a Mixed-Conductive Interfacial Protective Layer for Ultra-Stable Lithium Metal Anodes. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12836
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return