PDF (2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Stable Zn-Metal Anode Enabled by Solvation Structure Modulation and In-Situ SEI Layer Construction

Hao Wu1Hongting Yin1Han Tian2Jinlin Yang3()Ruiping Liu1 ()
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Show Author Information

Abstract

Aqueous zinc-ion batteries encounter impediments on their trajectory towards commercialization, primarily due to challenges such as dendritic growth, hydrogen evolution reaction. Throughout recent decades of investigation, electrolyte modulation by using function additives is widely considered as a facile and efficient way to prolong the Zn anode lifespan. Herein, N-(2-hydroxypropyl)ethylenediamine is employed as an additive to attach onto the Zn surface with a substantial adsorption energy with (002) facet. The as-formed in-situ solid-electrolyte interphase layer effectively mitigates hydrogen evolution reaction by constructing a lean-water internal Helmholtz layer. Additionally, N-(2-hydroxypropyl)ethylenediamine establishes a coordination complex with Zn2+, thereby modulating the solvation structure and enhancing the mobility of Zn2+. As expected, the Zn-symmetrical cell with N-(2-hydroxypropyl)ethylenediamine additive demonstrated successful cycling exceeding 1500 h under 1 mA cm−2 for 0.5 mAh cm−2. Furthermore, the Zn//δ-MnO2 battery maintains a capacity of approximately 130 mAh g−1 after 800 cycles at 1 A g−1, with a Coulombic efficiency surpassing 98%. This work presents a streamlined approach for realizing aqueous zinc-ion batteries with extended service life.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12839_ESM.docx (4.9 MB)

References

[1]

J. X. Zheng, Q. Zhao, T. Tang, J. F. Yin, C. D. Quilty, G. D. Renderos, X. T. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. H. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.

[2]

J. X. Zheng, D. C. Bock, T. Tang, Q. Zhao, J. F. Yin, K. R. Tallman, G. Wheeler, X. T. Liu, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, L. A. Archer, Nat. Energy 2021, 6, 398.

[3]

W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li, W. Zong, H. Li, Z. Li, Z. Zhang, J. Zhu, F. Guo, X. Gao, Z. Du, J. Chen, T. Wang, G. He, I. P. Parkin, Angew. Chem. Int. Ed. Engl. 2023, 62, e202212695.

[4]

R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao, L. Qie, Y. Huang, Nat. Commun. 2022, 13, 3252.

[5]

M. Wu, G. Zhang, H. Yang, X. Liu, M. Dubois, M. A. Gauthier, S. Sun, InfoMat 2021, 4, e12265.

[6]

S. J. Zhang, J. Hao, D. Luo, P. F. Zhang, B. Zhang, K. Davey, Z. Lin, S. Z. Qiao, Adv. Energy Mater. 2021, 11, 2102010.

[7]

J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Energy Environ. Sci. 2018, 11, 3075.

[8]

H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 202100186.

[9]

H. Peng, C. Liu, N. Wang, C. Wang, D. Wang, Y. Li, B. Chen, J. Yang, Y. Qian, Energy Environ. Sci. 2022, 15, 1682.

[10]

Y. Mu, Z. Li, B. K. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye, M. Han, T. Zhao, L. Zeng, Nat. Commun. 2023, 14, 4205.

[11]

Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong, J. Feng, Y. Qian, ACS Nano 2019, 13, 11676.

[12]

H. Wang, W. Ye, B. Yin, K. Wang, M. S. Riaz, B. B. Xie, Y. Zhong, Y. Hu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202218872.

[13]

H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun, C. Sheng, P. He, S. Guo, H. Zhou, Angew. Chem. Int. Ed. Engl. 2023, 62, e202310143.

[14]

S. J. Banik, R. Akolkar, J. Electrochem. Soc. 2013, 160, D519.

[15]

A. Bani Hashemi, G. Kasiri, F. La Mantia, Electrochim. Acta 2017, 258, 703.

[16]

J. W. Gallaway, A. M. Gaikwad, B. Hertzberg, C. K. Erdonmez, Y.-C. K. Chen-Wiegart, L. A. Sviridov, K. Evans-Lutterodt, J. Wang, S. Banerjee, D. A. Steingart, J. Electrochem. Soc. 2013, 161, A275.

[17]

X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang, Y. Lu, H. Pan, B. B. Xu, M. Yan, Y. Jiang, Small 2023. 20, e2306739.

[18]

X. Wang, K. Feng, B. Sang, G. Li, Z. Zhang, G. Zhou, B. Xi, X. An, S. Xiong, Adv. Energy Mater. 2023, 13, 202301670.

[19]

Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Adv. Energy Mater. 2023, 13, 202301999.

[20]

Y. Wang, R. Zhao, M. Liu, J. Yang, A. Zhang, J. Yue, C. Wu, Y. Bai, Adv. Energy Mater. 2023, 13, 202302707.

[21]

X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J. Liu, P. Rao, Z. Guo, Adv. Mater. 2021, 33, e2007416.

[22]

Y. Liu, J. Wang, J. Sun, F. Xiong, Q. Liu, Y. An, L. Shen, J. Wang, Q. An, L. Mai, J. Mater. Chem. A 2022, 10, 25029.

[23]

Y. Zhao, H. Liu, Y. Huyan, D. Lei, N. Li, S. Tian, J.-G. Wang, J. Energy Chem. 2023, 79, 450.

[24]

Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu, X. Song, Y. Ma, H. Xiang, Y. Huang, ACS Energy Lett. 2022, 8, 372.

[25]

D. Xie, Y. Sang, D. H. Wang, W. Y. Diao, F. Y. Tao, C. Liu, J. W. Wang, H. Z. Sun, J. P. Zhang, X. L. Wu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202216934.

[26]

R. Yao, L. Qian, Y. Sui, G. Zhao, R. Guo, S. Hu, P. Liu, H. Zhu, F. Wang, C. Zhi, C. Yang, Adv. Energy Mater. 2021, 12, 202102780.

[27]

M. Luo, C. Wang, H. Lu, Y. Lu, B. B. Xu, W. Sun, H. Pan, M. Yan, Y. Jiang, Energy Storage Mater. 2021, 41, 515.

[28]

L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu, S.-X. Dou, S.-Z. Qiao, Energy Environ. Sci. 2021, 14, 5669.

[29]

T. Xiao, J. L. Yang, B. Zhang, J. Wu, J. Li, W. Mai, H. J. Fan, Angew. Chem. Int. Ed. Engl. 2024, 63, e202318470.

[30]

J. L. Yang, T. Xiao, T. Xiao, J. Li, Z. Yu, K. Liu, P. Yang, H. J. Fan, Adv. Mater. 2024, 36, 2313610.

[31]

J. L. Yang, L. L. Liu, Z. H. Yu, P. B. Chen, J. Li, P. A. Dananjaya, E. K. Koh, W. S. Lew, K. Liu, P. H. Yang, H. J. Fan, ACS Energy Lett. 2023, 8, 2042.

[32]

J. L. Yang, Z. H. Yu, J. W. Wu, J. Li, L. Y. Chen, T. Xiao, T. Xiao, D. Q. Cai, K. Liu, P. H. Yang, H. J. Fan, Adv. Mater. 2023, 35, 9.

[33]

J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon, J. H. Yang, H.-T. Kim, Energy Environ. Sci. 2020, 13, 2839.

[34]

H. T. Lu, X. L. Zhang, M. H. Luo, K. S. Cao, Y. H. Lu, B. B. Xu, H. G. Pan, K. Tao, Y. Z. Jiang, Adv. Funct. Mater. 2021, 31, 9.

[35]

J. L. Yang, J. Li, J. W. Zhao, K. Liu, P. H. Yang, H. J. Fan, Adv. Mater. 2022, 34, 202202382.

[36]

R. H. Jiang, T. Naren, Y. J. Chen, Z. Chen, C. X. Zhang, L. Ma, H. K. Xu, L. B. Chen, L. J. Zhou, W. F. Wei, Energy Storage Mater. 2023, 63, 9.

[37]

H. Tian, J. L. Yang, Y. R. Deng, W. H. Tang, R. P. Liu, C. Y. Xu, P. Han, H. J. Fan, Adv. Energy Mater. 2023, 13, 8.

[38]

X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia, H. Luo, H. Wu, W. Cai, Y. Zhang, Adv. Energy Mater. 2023, 13, 202302749.

[39]

H. Cao, X. Huang, Y. Liu, Q. Hu, Q. Zheng, Y. Huo, F. Xie, J. Zhao, D. Lin, J. Colloid Interface Sci. 2022, 627, 367.

[40]

Q. Gou, H. Luo, Y. Zheng, Q. Zhang, C. Li, J. Wang, O. Odunmbaku, J. Zheng, J. Xue, K. Sun, M. Li, Small 2022, 18, e2201732.

[41]

Y. Wu, N. Wang, H. Liu, R. Cui, J. Gu, R. Sun, Y. Zhu, L. Gou, X. Fan, D. Li, D. Wang, J. Colloid Interface Sci. 2023, 629, 916.

[42]

X. Gong, H. Yang, J. Wang, G. Wang, J. Tian, ACS Appl. Mater. Interfaces 2023, 15, 4152.

[43]

M. H. Alfaruqi, S. Islam, D. Y. Putro, V. Mathew, S. Kim, J. Jo, S. Kim, Y.-K. Sun, K. Kim, J. Kim, Electrochim. Acta 2018, DOI: 10.1016/j.electacta.2018.04.139

Energy & Environmental Materials
Cite this article:
Wu H, Yin H, Tian H, et al. Stable Zn-Metal Anode Enabled by Solvation Structure Modulation and In-Situ SEI Layer Construction. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12839
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return