PDF (9.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Engineering Biomimetic Sub-Nanostructured Ion-Selective Nanofiltration Membrane for Excellent Separation of Li+/Co2+

Yanrui WangHaochun WangYating HuMeng ZhangZixin MaShu JiangJinlong WangHeng LiangXiaobin Tang ()
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
Show Author Information

Abstract

Nanofiltration (NF) membranes with exceptional ion selectivity and permeability are needed for the recovery of lithium from waste lithium-ion batteries. Herein, inspired by the homogeneous microchannels in the skeletal structure of glass sponges, an innovative biomimetic sponge-like sub-nanostructured NF membrane was designed using an alkali-induced MXene (AMXene)-ethyl formate (EF)-induced bulk/interfacial diffusion decoupling strategy to simultaneously improve Li+/Co2+ selectivity and membrane permeability. The Li+/Co2+ separation factor (SLi,Co = 24) of the engineered membrane was improved by an order of magnitude compared to that of an NF270 membrane (SLi,Co = 2). The selectivity of Mg2+/Na+ (BNaCl=BMgCl2 = 286) and SO42−/Cl (BNaCl=BNaSO4 = 941) increased by 3 ~ 12 times, and the permeability (25.8 L m−2 h−1 bar−1) remained at a desirable level, beyond the current upper bound of the other cutting-edge membranes. The superior performance was attributed to the limited release of amine in bulk phase and the boosted interfacial diffusion by reducing interfacial energy barrier during the interfacial polymerization reaction, which were realized via the synergetic effects of AMXene and EF. This approach yielded a biomimetic sponge-like sub-nanostructured NF membrane with controlled homogeneous pore radii (0.202 nm) and a thickness as small as 16.08 nm, which led to high ion selectivity and permeability. The engineered membrane was capable of efficient separation and recovery of Li+/metal ions.

Electronic Supplementary Material

Download File(s)
eem-8-2-e12845_ESM.docx (9 MB)

References

[1]

D. H. P. Kang, M. Chen, O. A. Ogunseitan, Environ. Sci. Technol. 2013, 47, 5495.

[2]

J. Wang, J. Ma, Z. Zhuang, Z. Liang, K. Jia, G. Ji, G. Zhou, H.-M. Cheng, Chem. Rev. 2024, 124, 2839.

[3]

H. Ji, J. Wang, J. Ma, H.-M. Cheng, G. Zhou, Chem. Soc. Rev. 2023, 52, 8194.

[4]

X. Wu, J. Ma, J. Wang, X. Zhang, G. Zhou, Z. Liang, Global Chall. 2022, 6, 2200067.

[5]

R. Epsztein, R. M. DuChanois, C. L. Ritt, A. Noy, M. Elimelech, Nat. Nanotechnol. 2020, 15, 426.

[6]

H.-Z. Zhang, Z.-L. Xu, H. Ding, Y.-J. Tang, Desalination 2017, 420, 158.

[7]

J. Tian, H. Chang, S. Gao, Y. Zong, B. Van der Bruggen, R. Zhang, J. Membr. Sci. 2021, 634, 119450.

[8]

X. Cheng, C. Lai, J. Li, W. Zhou, X. Zhu, Z. Wang, J. Ding, X. Zhang, D. Wu, H. Liang, C. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 57998.

[9]

K. Jiang, L. Long, L. E. Peng, Z. Yang, W. Liu, D.-M. Shin, C. Y. Tang, Ind. Eng. Chem. Res. 2023, 62, 19813.

[10]

X. Q. Cheng, C. Zhang, Z. X. Wang, L. Shao, J. Membr. Sci. 2016, 499, 326.

[11]

Y.-L. Liu, Y.-Y. Zhao, X.-M. Wang, X.-H. Wen, X. Huang, Y. F. Xie, J. Membr. Sci. 2019, 582, 274.

[12]

M. Liu, Y. Zheng, S. Shuai, Q. Zhou, S. Yu, C. Gao, Desalination 2012, 288, 98.

[13]

Y. Wang, X. Ma, B. S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Mater. Today Nano 2018, 3, 69.

[14]

Z. Ali, B. S. Ghanem, Y. Wang, F. Pacheco, W. Ogieglo, H. Vovusha, G. Genduso, U. Schwingenschlogl, Y. Han, I. Pinnau, Adv. Mater. 2020, 32, 2001132.

[15]

S. Zhao, C. Mao, T. Wang, X. Tian, Z. Qiao, Z. Wang, J. Wang, Sep. Purif. Technol. 2021, 256, 124436.

[16]

L. Shen, M. Yi, S. Japip, C. Han, L. Tian, C. H. Lau, Y. Wang, AICHE J. 2021, 67, e17173.

[17]

L. Long, L. E. Peng, S. Zhou, Q. Gan, X. Li, J. Jiang, J. Han, X. Zhang, H. Guo, C. Tang, Water Res. 2023, 242, 120255.

[18]

L. Shen, W.-S. Hung, J. Zuo, L. Tian, M. Yi, C. Ding, Y. Wang, J. Membr. Sci. 2020, 599, 117834.

[19]

Z. Yang, H. Guo, C. Y. Tang, J. Membr. Sci. 2019, 590, 117297.

[20]

Z. Yang, L. Long, C. Wu, C. Y. Tang, ACS ES&T Eng. 2022, 2, 377.

[21]

J. R. Werber, C. O. Osuji, M. Elimelech, Nat. Rev. Mater. 2016, 1, 16018.

[22]

X. Li, H. Zhang, P. Wang, J. Hou, J. Lu, C. D. Easton, X. Zhang, M. R. Hill, A. W. Thornton, J. Z. Liu, B. D. Freeman, A. J. Hill, L. Jiang, H. Wang, Nat. Commun. 2019, 10, 2490.

[23]

J. Wang, Y. Zhang, J. Zhu, J. Hou, J. Liu, B. Van der Bruggen, J. Membr. Sci. 2016, 510, 27.

[24]

J. Li, H. Peng, K. Liu, Q. Zhao, Adv. Mater. 2023, 36, 2309406.

[25]

L. Zhang, M. Hu, H. Matsuyama, X. Li, Sep. Purif. Technol. 2024, 334, 126011.

[26]

Y. Zhang, L. Wang, W. Sun, Y. Hu, H. Tang, J. Ind. Eng. Chem. 2020, 81, 7.

[27]

T. E. Culp, B. Khara, K. P. Brickey, M. Geitner, T. J. Zimudzi, J. D. Wilbur, S. D. Jons, A. Roy, M. Paul, B. Ganapathysubramanian, A. L. Zydney, M. Kumar, E. D. Gomez, Science 2021, 371, 72.

[28]

G. M. Geise, Science 2021, 371, 31.

[29]

G. Zhao, H. Gao, Z. Qu, H. Fan, H. Meng, Nat. Commun. 2023, 14, 2726.

[30]

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Nature 2008, 452, 301.

[31]

Y. Liang, Y. Zhu, C. Liu, K.-R. Lee, W.-S. Hung, Z. Wang, Y. Li, M. Elimelech, J. Jin, S. Lin, Nat. Commun. 2020, 11, 2015.

[32]

L. Shen, R. Cheng, M. Yi, W.-S. Hung, S. Japip, L. Tian, X. Zhang, S. Jiang, S. Li, Y. Wang, Nat. Commun. 2022, 13, 500.

[33]

Y. Zhang, H. Wang, J. Guo, X. Cheng, G. Han, C. H. Lau, H. Lin, S. Liu, J. Ma, L. Shao, Science 2023, 382, 202.

[34]

C. Zhao, Y. Zhang, Y. Jia, B. Li, W. Tang, C. Shang, R. Mo, P. Li, S. Liu, S. Zhang, Nat. Commun. 2023, 14, 1112.

[35]

H. Zheng, Z. Mou, Y. J. Lim, N. Srikanth, W. Zhang, S. Guo, R. Wang, K. Zhou, Small Sci. 2022, 2, 2200026.

[36]

Z. Zhang, X. Shi, R. Wang, A. Xiao, Y. Wang, Chem. Sci. 2019, 10, 9077.

[37]

Z. Wang, Z. Wang, S. Lin, H. Jin, S. Gao, Y. Zhu, J. Jin, Nat. Commun. 2018, 9, 2004.

[38]

D. Xu, X. Zhu, X. Luo, Y. Guo, Y. Liu, L. Yang, X. Tang, G. Li, H. Liang, Environ. Sci. Technol. 2021, 55, 1270.

[39]

S. Gao, Y. Zhu, Y. Gong, Z. Wang, W. Fang, J. Jin, ACS Nano 2019, 13, 5278.

[40]

H. E. Karahan, K. Goh, C. Zhang, E. Yang, C. Yildirim, C. Y. Chuah, M. G. Ahunbay, J. Lee, S. B. Tantekin-Ersolmaz, Y. Chen, T.-H. Bae, Adv. Mater. 2020, 32, e1906697.

[41]

Z. Pan, L. Kang, T. Li, M. Waqar, J. Yang, Q. Gu, X. Liu, Z. Kou, Z. Wang, L. Zheng, J. Wang, ACS Nano 2021, 15, 12975.

[42]

L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun. 2018, 9, 155.

[43]

R. Xu, Y. Kang, W. Zhang, B. Pan, X. Zhang, Nat. Commun. 2023, 14, 4907.

[44]

V. Freger, Langmuir 2003, 19, 4791.

[45]

Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Science 2018, 360, 518.

[46]

X.-H. Ma, Z.-K. Yao, Z. Yang, H. Guo, Z.-L. Xu, C. Y. Tang, M. Elimelech, Environ. Sci. Technol. Lett. 2018, 5, 123.

[47]

Q. Gan, L. E. Peng, H. Guo, Z. Yang, C. Y. Tang, Environ. Sci. Technol. 2022, 56, 100036.

[48]

T. Le, E. Jamshidi, M. Beidaghi, M. R. Esfahani, ACS Appl. Mater. Interfaces 2022, 14, 25397.

[49]

L. Yang, X. Zhang, J. Rahmatinejad, B. Raisi, Z. Ye, J. Membr. Sci. 2023, 670, 121355.

[50]

Z.-L. Qiu, L.-F. Fang, Y.-J. Shen, W.-H. Yu, B.-K. Zhu, C. Helix-Nielsen, W. Zhang, ACS Nano 2021, 15, 7522.

[51]

S. Li, L. Bai, J. Ding, Z. Liu, G. Li, H. Liang, Environ. Sci. Technol. 2023, 57, 14452.

[52]

A. Werner, A. Rieger, M. Mosch, R. Haseneder, J.-U. Repke, Sep. Purif. Technol. 2018, 194, 319.

[53]

C. J. Zhang, S. Pinilla, N. McEyoy, C. P. Cullen, B. Anasori, E. Long, S.-H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G. S. Duesberg, Y. Gogotsi, V. Nicolosi, Chem. Mater. 2017, 29, 4848.

[54]

L. Long, C. Wu, Z. Yang, C. Y. Tang, Environ. Sci. Technol. 2022, 56, 2656.

[55]

Y. Wang, H. Chang, S. Jiang, J. Chen, J. Wang, H. Liang, G. Li, X. Tang, J. Membr. Sci. 2023, 677, 138070.

Energy & Environmental Materials
Cite this article:
Wang Y, Wang H, Hu Y, et al. Engineering Biomimetic Sub-Nanostructured Ion-Selective Nanofiltration Membrane for Excellent Separation of Li+/Co2+. Energy & Environmental Materials, 2025, 8(2). https://doi.org/10.1002/eem2.12845
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return