The increasing integration of new technologies is driving a fundamental revolution in the healthcare sector. Developments in artificial intelligence (AI), machine learning, and big data analytics have completely transformed the diagnosis, treatment, and care of patients. AI‐powered solutions are enhancing the efficiency and accuracy of healthcare delivery by demonstrating exceptional skills in personalized medicine, early disease detection, and predictive analytics. Furthermore, telemedicine and remote patient monitoring systems have overcome geographical constraints, offering easy and accessible healthcare services, particularly in underserved areas. Wearable technology, the Internet of Medical Things, and sensor technologies have empowered individuals to take an active role in tracking and managing their health. These devices facilitate real‐time data collection, enabling preventive and personalized care. Additionally, the development of 3D printing technology has revolutionized the medical field by enabling the production of customized prosthetics, implants, and anatomical models, significantly impacting surgical planning and treatment strategies. Accepting these advancements holds the potential to create a more patient‐centered, efficient healthcare system that emphasizes individualized care, preventive care, and better overall health outcomes. This review's novelty lies in exploring how these technologies are radically transforming the healthcare industry, paving the way for a more personalized and effective healthcare for all. It highlights the capacity of modern technology to revolutionize healthcare delivery by addressing long‐standing challenges and improving health outcomes. Although the approval and use of digital technology and advanced data analysis face scientific and regulatory obstacles, they have the potential for transforming translational research. as these technologies continue to evolve, they are poised to significantly alter the healthcare environment, offering a more sustainable, efficient, and accessible healthcare ecosystem for future generations. Innovation across multiple fronts will shape the future of advanced healthcare technology, revolutionizing the provision of healthcare, enhancing patient outcomes, and equipping both patients and healthcare professionals with the tools to make better decisions and receive personalized treatment. As these technologies continue to develop and become integrated into standard healthcare practices, the future of healthcare will probably be more accessible, effective, and efficient than ever before.
Li J, Ma Q, Chan AH, Man SS. Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Appl Ergon. 2019;75:162–9. https://doi.org/10.1016/j.apergo.2018.10.006
Mohammadzadeh N, Gholamzadeh M, Saeedi S, Rezayi S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: a systematic literature review. J Ambient Intell Hum Comput. 2023;14(5):6027–41. https://doi.org/10.1007/s12652-020-02656-x
Gries A, Seekamp A, Wrede C, Dodt C. Zusatz‐weiterbildung klinische akut‐ und notfallmedizin in Deutschland. Anaesthesist. 2018;67(12):895–900. https://doi.org/10.1007/s00101-018-0515-5
Chen M, Cui D, Haick H, Tang N. Artificial Intelligence‐based medical sensors for healthcare system. Adv Sens Res. 2024;3(3):2300009. https://doi.org/10.1002/adsr.202300009
Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, et al. Recent advancements in emerging technologies for healthcare management systems: a survey. Healthcare. 2022;10(10):1940. https://doi.org/10.3390/healthcare10101940
Zahedian Nezhad M, Bojnordi AJJ, Mehraeen M, Bagheri R, Rezazadeh J. Securing the future of IoT‐healthcare systems: a meta‐synthesis of mandatory security requirements. Int J Med Inform. 2024;185:105379. https://doi.org/10.1016/j.ijmedinf.2024.105379
Krishnamoorthy S, Dua A, Gupta S. Role of emerging technologies in future IoT‐driven healthcare 4.0 technologies: a survey, current challenges and future directions. J Ambient Intell Hum Comput. 2023;14(1):361–407. https://doi.org/10.1007/s12652-021-03302-w
Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 2021;21(1):125. https://doi.org/10.1186/s12911-021-01488-9
Yang CC. Explainable artificial intelligence for predictive modeling in healthcare. J Healthc Inform Res. 2022;6(2):228–39. https://doi.org/10.1007/s41666-022-00114-1
Pise AA, Almuzaini KK, Ahanger TA, Farouk A, Pant K, Pareek PK, et al. Enabling artificial intelligence of things (AIoT) healthcare architectures and listing security issues. Comput Intell Neurosci. 2022;2022:8421434. https://doi.org/10.1155/2022/8421434
Sharma A, Singh A, Gupta V, Arya S. Advancements and future prospects of wearable sensing technology for healthcare applications. Sens Diagn. 2022;1(3):387–404. https://doi.org/10.1039/D2SD00005A
Gentili A, Failla G, Melnyk A, Puleo V, Tanna GLD, Ricciardi W, et al. The cost‐effectiveness of digital health interventions: a systematic review of the literature. Front Public Health. 2022;10:787135. https://doi.org/10.3389/fpubh.2022.787135
Al‐Kahtani MS, Khan F, Taekeun W. Application of Internet of Things and sensors in healthcare. Sensors. 2022;22(15):5738. https://doi.org/10.3390/s22155738
Vudathaneni VKP, Lanke RB, Mudaliyar MC, Movva KV, Mounika Kalluri L, Boyapati R. The impact of telemedicine and remote patient monitoring on healthcare delivery: a comprehensive evaluation. Cureus. 2024;16(3):e55534. https://doi.org/10.7759/cureus.55534
Morgan AA, Abdi J, Syed MAQ, Kohen GE, Barlow P, Vizcaychipi MP. Robots in healthcare: a scoping review. Curr Robot Rep. 2022;3(4):271–80. https://doi.org/10.1007/s43154-022-00095-4
Batko K, Ślęzak A. The use of big data analytics in healthcare. J Big Data. 2022;9(1):3. https://doi.org/10.1186/s40537-021-00553-4
Farasati Far B. Artificial intelligence ethics in precision oncology: balancing advancements in technology with patient privacy and autonomy. Explor Target Anti‐tumor Ther. 2023;4(4):685–9. https://doi.org/10.37349/etat.2023.00160
Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next‐generation personalized Medicine. Int J Mol Sci. 2023;24(7):6357. https://doi.org/10.3390/ijms24076357
Mamlin BW, Tierney WM. The promise of information and communication technology in healthcare: extracting value from the chaos. Am J Med Sci. 2016;351(1):59–68. https://doi.org/10.1016/j.amjms.2015.10.015
Sikdar S, Guha S. Advancements of healthcare technologies: paradigm towards smart healthcare systems. Advances in intelligent systems and computing. Singapore: Springer Singapore; 2020. p. 113–32. https://doi.org/10.1007/978-981-15-2740-1_9
Maleki Varnosfaderani S, Forouzanfar M. The role of AI in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering. 2024;11(4):337. https://doi.org/10.3390/bioengineering11040337
Thimbleby H. Technology and the future of healthcare. J Public Health Res. 2013;2(3):e28. https://doi.org/10.4081/jphr.2013.e28
Jelacic S, Bowdle A, Nair BG, Kusulos D, Bower L, Togashi K. A system for anesthesia drug administration using barcode technology: the codonics safe label system and smart anesthesia manager. Anesth Analg. 2015;121(2):410–21. https://doi.org/10.1213/ANE.0000000000000256
Alarcón‐Paredes A, Francisco‐García V, Guzmán‐Guzmán I, Cantillo‐Negrete J, Cuevas‐Valencia R, Alonso‐Silverio G. An IoT‐based non‐invasive glucose level monitoring system using raspberry pi. Appl Sci. 2019;9(15):3046. https://doi.org/10.3390/app9153046
Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Artificial intelligence in healthcare. Amsterdam: Elsevier; 2020. p. 25–60. https://doi.org/10.1016/b978-0-12-818438-7.00002-2
Iqbal J, Cortés Jaimes DC, Makineni P, Subramani S, Hemaida S, Thugu TR, et al. Reimagining healthcare: unleashing the power of artificial intelligence in medicine. Cureus. 2023;15(9):e44658. https://doi.org/10.7759/cureus.44658
Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative potential of AI in healthcare: definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare. 2024;12(2):125. https://doi.org/10.3390/healthcare12020125
Al‐Antari MA. Artificial intelligence for medical diagnostics‐existing and future AI technology! Diagnostics. 2023;13(4):688. https://doi.org/10.3390/diagnostics13040688
Gala D, Behl H, Shah M, Makaryus AN. The role of artificial intelligence in improving patient outcomes and future of healthcare delivery in cardiology: a narrative review of the literature. Healthcare. 2024;12(4):481. https://doi.org/10.3390/healthcare12040481
Akhbarifar S, Javadi HHS, Rahmani AM, Hosseinzadeh M. A secure remote health monitoring model for early disease diagnosis in cloud‐based IoT environment. Person Ubiquitous Comput. 2023;27(3):697–713. https://doi.org/10.1007/s00779-020-01475-3
Yu HQ, Reiff‐Marganiec S. Learning disease causality knowledge from the web of health data. Int J Semant Web Inf Syst. 2022;18(1):1–19. https://doi.org/10.4018/IJSWIS.297145
Gajarawala SN, Pelkowski JN. Telehealth benefits and barriers. J Nurse Practitioners. 2021;17(2):218–21. https://doi.org/10.1016/j.nurpra.2020.09.013
Balestra M. Telehealth and legal implications for nurse practitioners. J Nurse Practitioners. 2018;14(1):33–9. https://doi.org/10.1016/j.nurpra.2017.10.003
Shaik T, Tao X, Higgins N, Li L, Gururajan R, Zhou X, et al. Remote patient monitoring using artificial intelligence: current state, applications, and challenges. WIREs Data Min & Knowl. 2023;13(2):e1485. https://doi.org/10.1002/widm.1485
Motolese F, Magliozzi A, Puttini F, Rossi M, Capone F, Karlinski K, et al. Parkinson's disease remote patient monitoring during the COVID‐19 lockdown. Front Neurol. 2020;11:567413. https://doi.org/10.3389/fneur.2020.567413
Assenza G, Lanzone J, Brigo F, Coppola A, Di Gennaro G, Di Lazzaro V, et al. Epilepsy care in the time of COVID‐19 pandemic in Italy: risk factors for seizure worsening. Front Neurol. 2020;11:737. https://doi.org/10.3389/fneur.2020.00737
Vegesna A, Tran M, Angelaccio M, Arcona S. Remote patient monitoring via non‐invasive digital technologies: a systematic review. Telemed e‐Health. 2017;23(1):3–17. https://doi.org/10.1089/tmj.2016.0051
Margolis KL, Asche SE, Dehmer SP, Bergdall AR, Green BB, Sperl‐Hillen JM, et al. Long‐term outcomes of the effects of home blood pressure telemonitoring and pharmacist management on blood pressure among adults with uncontrolled hypertension: follow‐up of a cluster randomized clinical trial. JAMA Netw Open. 2018;1(5):e181617. https://doi.org/10.1001/jamanetworkopen.2018.1617
Mantena S, Keshavjee S. Strengthening healthcare delivery with remote patient monitoring in the time of COVID‐19. BMJ Health Care Inform. 2021;28(1):e100302. https://doi.org/10.1136/bmjhci-2020-100302
Mitka M. Developing countries find telemedicine forges links to more care and research. JAMA. 1998;280(15):1295–6. https://doi.org/10.1001/jama.280.15.1295
Edworthy SM. Telemedicine in developing countries. BMJ. 2001;323(7312):524–5. https://doi.org/10.1136/bmj.323.7312.524
Volterrani M, Sposato B. Remote monitoring and telemedicine. Eur Heart J Suppl. 2019;21(Suppl M):M54–6. https://doi.org/10.1093/eurheartj/suz266
Dodziuk H. Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol. 2016;13(3):283–93. https://doi.org/10.5114/kitp.2016.62625
Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health J. 2022;6(4):217–26. https://doi.org/10.1016/j.glohj.2022.11.001
Rengier F, Mehndiratta A, von Tengg‐Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41. https://doi.org/10.1007/s11548-010-0476-x
Manero A, Smith P, Sparkman J, Dombrowski M, Courbin D, Kester A, et al. Implementation of 3D printing technology in the field of prosthetics: past, present, and future. Int J Environ Res Public Health. 2019;16(9):1641. https://doi.org/10.3390/ijerph16091641
Lu D, Li T, Yu W, Feng H, Xu Y, Ma Z, et al. Expert consensus on the design, manufacture, materials, and clinical application of customized three‐dimensional printing scoliosis orthosis. Digit Med. 2022;8:2. https://doi.org/10.4103/digm.digm_34_21
Jose PA, GV PC. 3D printing of pharmaceuticals—a potential technology in developing personalized medicine. Asian J Pharm Res Dev. 2018;6(3):46–54. https://doi.org/10.22270/ajprd.v6i3.375
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85. https://doi.org/10.1038/nbt.2958
Mamo HB, Adamiak M, Kunwar A. 3D printed biomedical devices and their applications: a review on state‐of‐the‐art technologies, existing challenges, and future perspectives. J Mech Behav Biomed Mater. 2023;143:105930. https://doi.org/10.1016/j.jmbbm.2023.105930
Young KJ, Pierce JE, Zuniga JM. Assessment of body‐powered 3D printed partial finger prostheses: a case study. 3D Print Med. 2019;5(1):7. https://doi.org/10.1186/s41205-019-0044-0
Gyles C. Robots in Medicine. The Canadian Vet J. 2019;60(8):819–20.
Schramowski P, Turan C, Andersen N, Rothkopf CA, Kersting K. Large pre‐trained language models contain human‐like biases of what is right and wrong to do. Nat Mach Intell. 2022;4:258–68. https://doi.org/10.1038/s42256-022-00458-8
Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. Large language models encode clinical knowledge. Nature. 2023;620(7972):172–80. https://doi.org/10.1038/s41586-023-06291-2
Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, et al. A large language model for electronic health records. npj Digit Med. 2022;5(1):194. https://doi.org/10.1038/s41746-022-00742-2
Hasin Y, Seldin M, Lusis A. Multi‐omics approaches to disease. Genome Biol. 2017;18(1):83. https://doi.org/10.1186/s13059-017-1215-1
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype‐phenotype interactions. Nat Rev Genet. 2015;16(2):85–97. https://doi.org/10.1038/nrg3868
Van Eyk JE, Snyder MP. Precision Medicine: role of proteomics in changing clinical management and care. J Proteome Res. 2019;18(1):1–6. https://doi.org/10.1021/acs.jproteome.8b00504
Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299–310. https://doi.org/10.1038/nrg.2018.4
Kellogg RA, Dunn J, Snyder MP. Personal omics for precision health. Circ Res. 2018;122(9):1169–71. https://doi.org/10.1161/CIRCRESAHA.117.310909
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. https://doi.org/10.1126/science.abj6987
Bansal H, Luthra H, Raghuram SR. A review on machine learning aided multi‐omics data integration techniques for healthcare. Studies in big data. Cham: Springer Nature Switzerland; 2023. p. 211–39. https://doi.org/10.1007/978-3-031-38325-0_10
Palanisamy V, Thirunavukarasu R. Implications of big data analytics in developing healthcare frameworks—a review. J King Saud Univ Comput Inf Sci. 2019;31(4):415–25. https://doi.org/10.1016/j.jksuci.2017.12.007
Wamba SF, Gunasekaran A, Akter S, Ren SJ, Dubey R, Childe SJ. Big data analytics and firm performance: effects of dynamic capabilities. J Bus Res. 2017;70:356–65. https://doi.org/10.1016/j.jbusres.2016.08.009
Zhang Q, Yang LT, Chen Z, Li P. A survey on deep learning for big data. Inf Fusion. 2018;42:146–57. https://doi.org/10.1016/j.inffus.2017.10.006
Senthilkumar SA, Rai BK, Meshram AA, Gunasekaran A, Chandrakumarmangalam S. Big data in healthcare management: a review of literature. Am J Theoret Appl Bus. 2018;4(2):57–69. https://doi.org/10.11648/j.ajtab.20180402.14
Crimmins MM, Lowe TJ, Barrington M, Kaylor C, Phipps T, Le‐Roy C, et al. QUEST®: a data‐driven collaboration to improve quality, efficiency, safety, and transparency in acute care. Joint Commission J Qual Patient Saf. 2016;42(6):247–53. https://doi.org/10.1016/s1553-7250(16)42032-5
Tang J, Toma M, Gray NM, Delvaux J, Guthrie B, Grant A, et al. Pharmacist and data‐driven quality improvement in primary care (P‐DQIP): a qualitative study of anticipated implementation factors informed by the theoretical domains framework. BMJ Open. 2020;10(2):e033574. https://doi.org/10.1136/bmjopen-2019-033574
Batterham RW, Hawkins M, Collins PA, Buchbinder R, Osborne RH. Health literacy: applying current concepts to improve health services and reduce health inequalities. Public Health. 2016;132:3–12. https://doi.org/10.1016/j.puhe.2016.01.001
Krahn GL, Walker DK, Correa‐De‐Araujo R. Persons with disabilities as an unrecognized health disparity population. Am J Public Health. 2015;105(Suppl 2):S198–206. https://doi.org/10.2105/AJPH.2014.302182
Zajacova A, Lawrence EM. The relationship between education and health: reducing disparities through a contextual approach. Annu Rev Public Health. 2024;39:273–89. https://doi.org/10.1146/annurev-publhealth-031816-044628
Neutens T. Accessibility, equity and health care: review and research directions for transport geographers. J Transp Geogr. 2015;43:14–27. https://doi.org/10.1016/j.jtrangeo.2014.12.006
Hamed S, Thapar‐Björkert S, Bradby H, Ahlberg BM. Racism in european health care: structural violence and beyond. Qual Health Res. 2020;30(11):1662–73. https://doi.org/10.1177/1049732320931430
Holst H, Fessler A, Niehoff S. Covid‐19, social class and work experience in Germany: inequalities in work‐related health and economic risks. Eur Soc. 2021;23(sup1):S495–512. https://doi.org/10.1080/14616696.2020.1828979
Gatwiri K, Rotumah D, Rix E. BlackLivesMatter in healthcare: racism and implications for health inequity among aboriginal and torres strait islander peoples in Australia. Int J Environ Res Public Health. 2021;18(9):4399. https://doi.org/10.3390/ijerph18094399
Srinivas PN, Seshadri T, Velho N, Babu GR, Madegowda C, Channa Basappa Y, et al. Towards health equity and transformative action on tribal health (THETA) study to describe, explain and act on tribal health inequities in India: a health systems research study protocol. Wellcome Open Res. 2019;4:202. https://doi.org/10.12688/wellcomeopenres.15549.1
de Villiers K. Bridging the health inequality gap: an examination of South Africa's social innovation in health landscape. Infect Dis Poverty. 2021;10(1):19. https://doi.org/10.1186/s40249-021-00804-9
Sachs JD, Schmidt‐Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. Six transformations to achieve the sustainable development goals. Nat Sustain. 2019;2(9):805–14. https://doi.org/10.1038/s41893-019-0352-9
Meskó B, Drobni Z, Bényei É, Gergely B, Győrffy Z. Digital health is a cultural transformation of traditional healthcare. Mhealth. 2017;3:38. https://doi.org/10.21037/mhealth.2017.08.07
Puleo V, Gentili A, Failla G, Melnyk A, Di Tanna G, Ricciardi W, et al. Digital health technologies: a systematic review of their cost‐effectiveness. Eur J Pub Health. 2021;31(Suppl_3):ckab164.273. https://doi.org/10.1093/eurpub/ckab164.273
Zhang X, Hailu B, Tabor DC, Gold R, Sayre MH, Sim I, et al. Role of health information technology in addressing health disparities: patient, clinician, and system perspectives. Med Care. 2019;57(Suppl 6 2):S115–20. https://doi.org/10.1097/MLR.0000000000001092
Terlizzi EP, Cohen RA. Geographic variation in health insurance coverage: United States, 2020. Natl Health Stat Rep. 2022;(168):1–18. https://www.cdc.gov/nchs/data/nhsr/nhsr168.pdf
de Lusignan S, Mold F, Sheikh A, Majeed A, Wyatt JC, Quinn T, et al. Patients' online access to their electronic health records and linked online services: a systematic interpretative review. BMJ Open. 2014;4(9):e006021. https://doi.org/10.1136/bmjopen-2014-006021
Yeung AWK, Torkamani A, Butte AJ, Glicksberg BS, Schuller B, Rodriguez B, et al. The promise of digital healthcare technologies. Front Public Health. 2023;11:1196596. https://doi.org/10.3389/fpubh.2023.1196596
Cory N, Stevens P. Building a global framework for digital health services in the era of COVID‐19. Information Technology and Innovation Foundation; 2020.
Adamo JE, Bienvenu Ⅱ RV, Dolz F, Liebman M, Nilsen W, Steele SJ. Translation of digital health technologies to advance precision medicine: informing regulatory science. Digit Biomark. 2020;4(1):1–12. https://doi.org/10.1159/000505289
Mladenovska T, Choong PF, Wallace GG, O'Connell CD. The regulatory challenge of 3D bioprinting. Regener Med. 2023;18(8):659–74. https://doi.org/10.2217/rme-2022-0194
Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi‐functional machine learning platform development for better healthcare and precision medicine. Database. 2020;2020:baaa010. https://doi.org/10.1093/database/baaa010
Briguglio W, Moghaddam P, Yousef WA, Traoré I, Mamun M. Machine learning in precision Medicine to preserve privacy via encryption. Pattern Recognit Lett. 2021;151:148–54. https://doi.org/10.1016/j.patrec.2021.07.004
Abbaoui W, Retal S, El Bhiri B, Kharmoum N, Ziti S. Towards revolutionizing precision healthcare: a systematic literature review of artificial intelligence methods in precision medicine. Inform Med Unlocked. 2024;46:101475. https://doi.org/10.1016/j.imu.2024.101475
Jorgensen AL, Prince C, Fitzgerald G, Hanson A, Downing J, Reynolds J, et al. Implementation of genotype‐guided dosing of warfarin with point‐of‐care genetic testing in three UK clinics: a matched cohort study. BMC Med. 2019;17(1):76. https://doi.org/10.1186/s12916-019-1308-7
Hartmaier RJ, Albacker LA, Chmielecki J, Bailey M, He J, Goldberg ME, et al. High‐throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res. 2017;77(9):2464–75. https://doi.org/10.1158/0008-5472.CAN-16-2479
Harvey A, Brand A, Holgate ST, Kristiansen LV, Lehrach H, Palotie A, et al. The future of technologies for personalised medicine. N Biotechnol. 2012;29(6):625–33. https://doi.org/10.1016/j.nbt.2012.03.009
Maggi E, Patterson NE, Montagna C. Technological advances in precision medicine and drug development. Expert Rev Precis Med Drug Dev. 2016;1(3):331–43. https://doi.org/10.1080/23808993.2016.1176527
Moore JB. From personalised nutrition to precision Medicine: the rise of consumer genomics and digital health. Proc Nutr Soc. 2020;79(3):300–10. https://doi.org/10.1017/S0029665120006977
Yang X, Huang K, Yang D, Zhao W, Zhou X. Biomedical big data technologies, applications, and challenges for precision medicine: a review. Glob Challenges. 2024;8(1):2300163. https://doi.org/10.1002/gch2.202300163
Hyrkäs P, Haukipuro L, Väinämö S, Iivari M, Sachinopoulou A, Majava J. Collaborative innovation in healthcare: a case study of hospitals as innovation platforms. Int J Value Chain Manag. 2020;11(1):24–41. https://doi.org/10.1504/IJVCM.2020.105475
Dias C, Escoval A. The open nature of innovation in the hospital sector: the role of external collaboration networks. Health Policy Technol. 2012;1(4):181–6. https://doi.org/10.1016/j.hlpt.2012.10.002
Grynko T, Shevchenko T, Pavlov R, Shevchenko V, Pawliszczy D. The impact of collaboration strategy in the field of innovation on the effectiveness of organizational structure of healthcare institutions. Knowl Perform Manag. 2021;4(1):37–51. https://doi.org/10.21511/kpm.04(1).2020.04
Varkey B. Principles of clinical ethics and their application to practice. Med Princ Pract. 2021;30(1):17–28. https://doi.org/10.1159/000509119
Jahn WT. The 4 basic ethical principles that apply to forensic activities are respect for autonomy, beneficence, nonmaleficence, and justice. J Chiropr Med. 2011;10(3):225–6. https://doi.org/10.1016/j.jcm.2011.08.004
Farhud DD, Zokaei S. Ethical issues of artificial intelligence in Medicine and healthcare. Iran J Publ Health. 2021;50(11):ⅰ–ⅴ. https://doi.org/10.18502/ijph.v50i11.7600
Al Meslamani AZ. Technical and regulatory challenges of digital health implementation in developing countries. J Med Econ. 2023;26(1):1057–60. https://doi.org/10.1080/13696998.2023.2249757
Manteghinejad A, Javanmard SH. Challenges and opportunities of digital health in a post‐COVID19 world. J Res Med Sci. 2021;26:11. https://doi.org/10.4103/jrms.JRMS_1255_20
Cummins N, Schuller BW. Five crucial challenges in digital health. Front Digit Health. 2020;2:536203. https://doi.org/10.3389/fdgth.2020.536203
Kasoju N, Remya NS, Sasi R, Sujesh S, Soman B, Kesavadas C, et al. Digital health: trends, opportunities and challenges in medical devices, pharma and bio‐technology. CSI Trans ICT. 2023;11(1):11–30. https://doi.org/10.1007/s40012-023-00380-3
Khoury MJ, Evans JP. A public health perspective on a national precision Medicine cohort: balancing long‐term knowledge generation with early health benefit. JAMA. 2015;313(21):2117–8. https://doi.org/10.1001/jama.2015.3382
Antman EM, Benjamin EJ, Harrington RA, Houser SR, Peterson ED, Bauman MA, et al. Acquisition, analysis, and sharing of data in 2015 and beyond: a survey of the landscape: a conference report from the American heart association data summit 2015. J Am Heart Assoc. 2015;4(11):e002810. https://doi.org/10.1161/JAHA.115.002810
Grzybowski A, Jin K, Wu H. Challenges of artificial intelligence in medicine and dermatology. Clin Dermatol. 2024;42(3):210–5. https://doi.org/10.1016/j.clindermatol.2023.12.013
Wu C. Data privacy: from transparency to fairness. Technol Soc. 2024;76:102457. https://doi.org/10.1016/j.techsoc.2024.102457
Suárez A, Díaz‐Flores García V, Algar J, Gómez Sánchez M, Llorente de Pedro M, Freire Y. Unveiling the ChatGPT phenomenon: evaluating the consistency and accuracy of endodontic question answers. Int Endontic J. 2024;57(1):108–13. https://doi.org/10.1111/iej.13985
Vayena E, Haeusermann T, Adjekum A, Blasimme A. Digital health: meeting the ethical and policy challenges. Swiss Med Wkly. 2018;148:14571. https://doi.org/10.4414/smw.2018.14571
Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31. https://doi.org/10.1016/j.cell.2019.02.048
Vayena E, Mastroianni A, Kahn J. Caught in the web: informed consent for online health research. Sci Transl Med. 2013;5(173):173fs6. https://doi.org/10.1126/scitranslmed.3004798
Masud M, Gaba GS, Alqahtani S, Muhammad G, Gupta BB, Kumar P, et al. A lightweight and robust secure key establishment protocol for Internet of medical things in COVID‐19 patients care. IEEE Internet Things J. 2021;8(21):15694–703. https://doi.org/10.1109/JIOT.2020.3047662
Xu Z, He D, Vijayakumar P, Gupta BB, Shen J. Certificateless public auditing scheme with data privacy and dynamics in group user model of cloud‐assisted medical WSNs. IEEE J Biomed Health Inform. 2023;27(5):2334–44. https://doi.org/10.1109/JBHI.2021.3128775
Al Kuwaiti A, Nazer K, Al‐Reedy A, Al‐Shehri S, Al‐Muhanna A, Subbarayalu AV, et al. A review of the role of artificial intelligence in healthcare. J Pers Med. 2023;13(6):951. https://doi.org/10.3390/jpm13060951
Durrani H. Healthcare and healthcare systems: inspiring progress and future prospects. Mhealth. 2016;2:3. https://doi.org/10.3978/j.issn.2306-9740.2016.01.03
Seed LM. Horizon scanning in cancer genomics: how advances in genomic medicine will change cancer care over the next decade. Curr Genet Med Rep. 2021;9(3):37–46. https://doi.org/10.1007/s40142-021-00200-7
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188–94. https://doi.org/10.7861/fhj.2021-0095
Flöther FF. The state of quantum computing applications in health and medicine. Res Direc: Quantum Technol. 2023;1:e10. https://doi.org/10.1017/qut.2023.4
Ahmad Z, Rahim S, Zubair M, Abdul‐Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagn Pathol. 2021;16(1):24. https://doi.org/10.1186/s13000-021-01085-4
Ahn JC, Connell A, Simonetto DA, Hughes C, Shah VH. Application of artificial intelligence for the diagnosis and treatment of liver diseases. Hepatology. 2021;73(6):2546–63. https://doi.org/10.1002/hep.31603
Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020;288(1):62–81. https://doi.org/10.1111/joim.13030
Penrice DD, Rattan P, Simonetto DA. Artificial intelligence and the future of gastroenterology and hepatology. Gastro Hep Adv. 2022;1(4):581–95. https://doi.org/10.1016/j.gastha.2022.02.025