Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black‐box nature of many models limits interpretability, posing challenges for dermatologists.
To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient‐weighted class activation mapping and local interpretable model‐agnostic explanations algorithms, which provide clear visual explanations for model outputs.
SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions—dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, F1 score at 96.14%, and an area under the curve of 99.83%.
SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision‐making for dermatologists and potentially enhancing patient outcomes.
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi‐source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018;5:180161. https://doi.org/10.1038/sdata.2018.161
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. https://doi.org/10.1038/s41591-018-0316-z
Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Briefings Bioinf. 2018;19(6):1236–46. https://doi.org/10.1093/bib/bbx044
Sumithra R, Suhil M, Guru DS. Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput Sci. 2015;45:76–85. https://doi.org/10.1016/j.procs.2015.03.090
Maglogiannis I, Doukas CN. Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed. 2009;13(5):721–33. https://doi.org/10.1109/TITB.2009.2017529
Olayah F, Senan EM, Ahmed IA, Awaji B. AI techniques of dermoscopy image analysis for the early detection of skin lesions based on combined CNN features. Diagnostics. 2023;13(7):1314. https://doi.org/10.3390/diagnostics13071314
Kassem MA, Hosny KM, Fouad MM. Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access. 2020;8:114822–32. https://doi.org/10.1109/ACCESS.2020.3003890
Salido JAA, Ruiz Jr, C. Using deep learning for melanoma detection in dermoscopy images. Int J Mach Learn Comput. 2018;8(1):61–8. https://doi.org/10.18178/ijmlc.2018.8.1.664
Sherif F, Mohamed WA, Mohra AS. Skin lesion analysis toward melanoma detection using deep learning techniques. Int J Electron Telecommun. 2019;65(4):597–602. https://doi.org/10.24425/ijet.2019.129818
Guo S, Yang Z. Multi‐channel‐ResNet: an integration framework towards skin lesion analysis. Inf Med Unlocked. 2018;12:67–74. https://doi.org/10.1016/j.imu.2018.06.006
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist‐level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8. https://doi.org/10.1038/nature21056
Xie Y, Zhang J, Xia Y, Shen C. A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans Med Imaging. 2020;39(7):2482–93. https://doi.org/10.1109/TMI.2020.2972964
Yang J, Xie F, Fan H, Jiang Z, Liu J. Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access. 2018;6:65130–8. https://doi.org/10.1109/ACCESS.2018.2877587
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head‐to‐head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001
Hosseinzadeh Kassani S, Hosseinzadeh Kassani P. A comparative study of deep learning architectures on melanoma detection. Tissue Cell. 2019;58:76–83. https://doi.org/10.1016/j.tice.2019.04.009
Ünver HM, Ayan E. Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm. Diagnostics. 2019;9(3):72. https://doi.org/10.3390/diagnostics9030072
Bhuiyan MA, Azad I, Uddin MK. Image processing for skin cancer features extraction. Int J Sci Eng Res. 2013;4(2):1–6.
Barata C, Celebi ME, Marques JS. A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J Biomed Health Inf. 2019;23(3):1096–109. https://doi.org/10.1109/JBHI.2018.2845939
van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial intelligence (XAI) in deep learning‐based medical image analysis. Med Image Anal. 2022;79:102470. https://doi.org/10.1016/j.media.2022.102470
Nigar N, Umar M, Shahzad MK, Islam S, Abalo D. A deep learning approach based on explainable artificial intelligence for skin lesion classification. IEEE Access. 2022;10:113715–25. https://doi.org/10.1109/ACCESS.2022.3217217
Akın KD, Gurkan C, Budak A, Karataş H. Classification of monkeypox skin lesion using the explainable artificial intelligence assisted convolutional neural networks. Avrupa Bilim ve Teknoloji Dergisi. 2022;(40):106–10.
Mamun MA, Kabir MS, Akter M, Uddin MS. Recognition of human skin diseases using inception‐v3 with transfer learning. Int J Inf Technol. 2022;14(6):3145–54. https://doi.org/10.1007/s41870-022-01050-4
Hauser K, Kurz A, Haggenmüller S, Maron RC, von Kalle C, Utikal JS, et al. Explainable artificial intelligence in skin cancer recognition: a systematic review. Eur J Cancer. 2022;167:54–69. https://doi.org/10.1016/j.ejca.2022.02.025
Bharati S, Mondal MRH, Podder P. A review on explainable artificial intelligence for healthcare: why, how, and when. IEEE Trans Artif Intell. 2024;5(4):1429–42. https://doi.org/10.1109/TAI.2023.3266418
Nunnari FKadir MASonntag DOn the overlap between grad‐CAM saliency maps and explainable visual features in skin cancer images. Lecture notes in computer science. Cham: Springer International Publishing; 2021. p. 241–253. https://doi.org/10.1007/978-3-030-84060-0_16
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D, et al. A survey of methods for explaining black box models. ACM Comput Surv. 2019;51(5):1–42. https://doi.org/10.1145/3236009
Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Networks Learn Syst. 2021;32(11):4793–813. https://doi.org/10.1109/TNNLS.2020.3027314
Zunair H, Ben Hamza A. Melanoma detection using adversarial training and deep transfer learning. Phys Med Biol. 2020;65(13):135005. https://doi.org/10.1088/1361-6560/ab86d3
Adadi A, Berrada M. Peeking inside the black‐box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138–60. https://doi.org/10.1109/ACCESS.2018.2870052