Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cancer immunotherapy has emerged as the fourth most prevalent approach to tumor treatment, alongside surgery, radiotherapy, and chemotherapy. After several decades of development, chimeric antigen receptor T (CAR‐T) cell therapy, a promising branch of adoptive T‐cell therapy, has demonstrated superior efficacy and safety in comparison to other cell therapies in the treatment of cancer. At present, CAR‐T cells are predominantly used to treat hematological malignancies, although their application in solid tumors is being readily investigated. Although numerous studies have examined the biomarkers associated with the safety of CAR‐T cell therapy, few have evaluated predictors of CAR‐T cell therapeutic efficacy. Thus, the primary objective of this review article was to provide a comprehensive overview of the factors predicting the efficacy of CAR‐T cell therapy, with a particular focus on biomarkers and their detection methods.
Wiemann B, Starnes CO. Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64(3):529–64. https://doi.org/10.1016/0163-7258(94)90023-X
McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft‐tissue sarcomas. Iowa Orthop J. 2006;26:154–8.
Li L, Xie CY, Zheng MY, Jiang HL. Advances in research on tumor immunotherapy. Chin J Nature. 2021;43(6):391–9. https://www.nature.shu.edu.cn/CN/10.3969/j.issn.0253-9608.2021.06.001
Filin IY, Solovyeva VV, Kitaeva KV, Rutland CS, Rizvanov AA. Current trends in cancer immunotherapy. Biomedicines. 2020;8(12):621. https://doi.org/10.3390/biomedicines8120621
Tang J, Pearce L, O'Donnell‐Tormey J, Hubbard‐Lucey VM. Trends in the global immuno‐oncology landscape. Nat Rev Drug Discov. 2018;17(11):783–4. https://doi.org/10.1038/nrd.2018.167
Saez‐Ibañez AR, Upadhaya S, Partridge T, Shah M, Correa D, Campbell J. Landscape of cancer cell therapies: trends and real‐world data. Nat Rev Drug Discov. 2022;21(9):631–2. https://doi.org/10.1038/d41573-022-00095-1
Srivastava S, Riddell SR. Engineering CAR‐T cells: design concepts. Trends Immunol. 2015;36(8):494–502. https://doi.org/10.1016/j.it.2015.06.004
Lu J, Jiang G. The journey of CAR‐T therapy in hematological malignancies. Mol Cancer. 2022;21(1):194. https://doi.org/10.1186/s12943-022-01663-0
Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B‐cell malignancies. Drugs. 2017;77(3):237–45. https://doi.org/10.1007/s40265-017-0690-8
Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30‐expressing cells and lymphoma cell lines. Blood. 1994;83(8):2045–56. https://doi.org/10.1182/blood.v83.8.2045.2045
Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33‐targeted immunotherapy. Blood. 2012;119(26):6198–208. https://doi.org/10.1182/blood-2011-11-325050
Sun C, Mahendravada A, Ballard B, Kale B, Ramos C, West J, et al. Safety and efficacy of targeting CD138 with a chimeric antigen receptor for the treatment of multiple myeloma. Oncotarget. 2019;10(24):2369–83. https://doi.org/10.18632/oncotarget.26792
Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA‐based immunotherapy. Front Immunol. 2018;9:1821. https://doi.org/10.3389/fimmu.2018.01821
Yang YH, Liu JW, Lu C, Wei JF. CAR‐T cell therapy for breast cancer: from basic research to clinical application. Int J Biol Sci. 2022;18(6):2609–26. https://doi.org/10.7150/ijbs.70120
Hu Z, Zheng X, Jiao D, Zhou Y, Sun R, Wang B, et al. LunX‐CAR T cells as a targeted therapy for non‐small cell lung cancer. Mol Ther Oncolytics. 2020;17:361–70. https://doi.org/10.1016/j.omto.2020.04.008
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR‐T cell therapy for renal cell carcinoma: a comprehensive review. Investig Clin Urol. 2022;63(5):486–98. https://doi.org/10.4111/icu.20220103
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, et al. Claudin18.2‐specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 2019;111(4):409–18. https://doi.org/10.1093/jnci/djy134
Han D, Xu Z, Zhuang Y, Ye Z, Qian QQ. Current progress in CAR‐T cell therapy for hematological malignancies. J Cancer. 2021;12(2):326–34. https://doi.org/10.7150/jca.48976
Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. https://doi.org/10.1182/blood-2016-04-703751
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026
Ahmadzadehfar H, Rodrigues M, Zakavi R, Knoll P, Mirzaei S. Prognostic significance of the standardized uptake value of pre‐therapeutic (18)F‐FDG PET in patients with malignant lymphoma. Med Oncol. 2011;28(4):1570–6. https://doi.org/10.1007/s12032-010-9584-2
Stadler JC, Belloum Y, Deitert B, Sementsov M, Heidrich I, Gebhardt C, et al. Current and future clinical applications of ctDNA in immuno‐oncology. Cancer Res. 2022;82(3):349–58. https://doi.org/10.1158/0008-5472.CAN-21-1718
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. https://doi.org/10.1186/s13045-022-01351-y
Hu L, Chen X, Chen M, Fang J, Nie J, Dai H. Enrichment and detection of circulating tumor cells by immunomagnetic beads and flow cytometry. Biotechnol Lett. 2021;43(1):25–34. https://doi.org/10.1007/s10529-020-03007-8
Sun YF, Yang XR, Zhou J, Qiu SJ, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol. 2011;137(8):1151–73. https://doi.org/10.1007/s00432-011-0988-y
Huang RP. Cytokine protein arrays. Methods Mol Biol. 2004;264:215–31. https://doi.org/10.1385/1-59259-759-9:215
Merkel PA, Lebo T, Knight V. Functional analysis of anti‐cytokine autoantibodies using flow cytometry. Front Immunol. 2019;10:1517. https://doi.org/10.3389/fimmu.2019.01517
Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J, et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol. 2004;110(3):252–66. https://doi.org/10.1016/j.clim.2003.11.017
Maier R, Weger M, Haller‐Schober EM, El‐Shabrawi Y, Theisl A, Barth A, et al. Application of multiplex cytometric bead array technology for the measurement of angiogenic factors in the vitreous. Mol Vis. 2006;12:1143–7.
van Maarsseveen TC, Mullink H, de Haan M, de Groot J, Stam J, Meijer CJ. Simultaneous enumeration of T‐cell subsets and macrophages in bronchoalveolar lavage fluids by immunoenzyme double staining. Comparison with conventional immunofluorescence. Acta Cytol. 1989;33(4):550–6.
McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol. 2018;120:5.1.1–5.1.11. https://doi.org/10.1002/cpim.40
Naour FL. Identification of tumor antigens by using proteomics. Methods Mol Biol. 2007;360:327–34. https://doi.org/10.1385/1-59745-165-7:327
Lee YM, Jeong Y, Kang HJ, Chung SJ, Chung BH. Cascade enzyme‐linked immunosorbent assay (CELISA). Biosens Bioelectron. 2009;25(2):332–7. https://doi.org/10.1016/j.bios.2009.07.010
Yu X, Li P, Wang AA, Feng H, Yin Z, Li Y, et al. Quick identification of target antigens by tissue flow cytometry for CAR‐T therapy in B‐cell malignancies. Cytometry B Clin Cytom. 2022;102(4):317–9. https://doi.org/10.1002/cyto.b.22060
Amereh M, Akbari M. Immunohistochemistry (IHC) staining of in‐vitro cancer cell‐generated tumoroids. MethodsX. 2023;10:102242. https://doi.org/10.1016/j.mex.2023.102242
Tracey LJ, An Y, Justice MJ. CyTOF: an emerging technology for single‐cell proteomics in the mouse. Curr Protoc. 2021;1(4):e118. https://doi.org/10.1002/cpz1.118
Wargo JA, Reddy SM, Reuben A, Sharma P. Monitoring immune responses in the tumor microenvironment. Curr Opin Immunol. 2016;41:23–31. https://doi.org/10.1016/j.coi.2016.05.006
Lee SE, Wang F, Ocampo AT, Vasquez WR, Cho HW, Takahashi K, et al. Fidelity of peripheral blood for monitoring genomics and tumor immune microenvironment in myelodysplastic syndromes. EJHaem. 2020;1(2):552–7. https://doi.org/10.1002/jha2.112
Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Katz SC. Frontline science: functionally impaired geriatric CAR‐T cells rescued by increased alpha 5 beta 1 integrin expression. J Leukoc Biol. 2017;102(2):201–8. https://doi.org/10.1189/jlb.5HI0716‐322RR
Xu X, Sun Q, Liang X, Chen Z, Li Y, Zhang X, et al. Mechanisms of relapse after CD19 CAR T‐cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol. 2019;10:2664. https://doi.org/10.3389/fimmu.2019.02664
Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, et al. Standard‐of‐care axicabtagene ciloleucel for relapsed or refractory large B‐cell lymphoma: results from the US lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. https://doi.org/10.1200/JCO.19.02104
Locke FL, Rossi JM, Neelapu S, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B‐cell lymphoma. Blood Adv. 2020;4(19):4898–911. https://doi.org/10.1182/bloodadvances.2020002394
Ding J, Karp JE, Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers. 2017;19(4):353–63. https://doi.org/10.3233/CBM-160336
Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, et al. Factors associated with durable EFS in adult B‐cell ALL patients achieving MRD‐negative CR after CD19 CAR T‐cell therapy. Blood. 2019;133(15):1652–63. https://doi.org/10.1182/blood-2018-11-883710
Zhou X, Ge T, Li T, Huang L, Cao Y, Xiao Y, et al. CAR19/22 T cell therapy in adult refractory Burkitt's lymphoma. Cancer Immunol Immunother. 2021;70(8):2379–84. https://doi.org/10.1007/s00262-021-02850-6
Vercellino L, Blasi RD, Kanoun S, Tessoulin B, Rossi C, Aveni‐Piney MD, et al. Predictive factors of early progression after CAR T‐cell therapy in relapsed/refractory diffuse large B‐cell lymphoma. Blood Adv. 2020;4(22):5607–15. https://doi.org/10.1182/bloodadvances.2020003001
Jodon G, Colton MD, Abbott D, Cai A, Haverkos B, Morgan R, et al. Clinical and radiographic predictors of progression and survival in relapsed/refractory lymphoma patients receiving anti‐CD19 CAR T‐cell therapy. Clin Lymphoma Myeloma Leuk. 2023;23(1):49–56. https://doi.org/10.1016/j.clml.2022.09.009
Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A, Rossi J, et al. Lymphoma remissions caused by anti‐CD19 chimeric antigen receptor T cells are associated with high serum interleukin‐15 levels. J Clin Oncol. 2017;35(16):1803–13. https://doi.org/10.1200/JCO.2016.71.3024
Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Grupp SA, Maude SL, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T‐cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79. https://doi.org/10.1158/2159-8290.CD-16-0040
Liu Y, Jie X, Nian L, Wang Y, Wang C, Ma J, et al. A combination of pre‐infusion serum ferritin, CRP and IL‐6 predicts outcome in relapsed/refractory multiple myeloma patients treated with CAR‐T cells. Front Immunol. 2023;14:1169071. https://doi.org/10.3389/fimmu.2023.1169071
Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade‐long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature. 2022;602(7897):503–9. https://doi.org/10.1038/s41586-021-04390-6
Haradhvala NJ, Leick MB, Maurer K, Gohil SH, Larson RC, Yao N, et al. Distinct cellular dynamics associated with response to CAR‐T therapy for refractory B cell lymphoma. Nat Med. 2022;28(9):1848–59. https://doi.org/10.1038/s41591-022-01959-0
Pan Y, Wang H, An F, Wu F, Tao Q, Li Y, et al. CD4(+)CD25(+)CD127(low) regulatory T cells associated with the effect of CD19 CAR‐T therapy for relapsed/refractory B‐cell acute lymphoblastic leukemia. Int Immunopharmacol. 2021;96:107742. https://doi.org/10.1016/j.intimp.2021.107742
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 2019;20(6):1283. https://doi.org/10.3390/ijms20061283
Xu X, Sun Q, Liang X, Chen Z, Zhang X, Zhou X, et al. Mechanisms of relapse after CD19 CAR T‐cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol. 2019;10:2664. https://doi.org/10.3389/fimmu.2019.02664
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DB, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor‐modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. https://doi.org/10.1056/NEJMoa1215134
Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21(3):145–61. https://doi.org/10.1038/s41568-020-00323-z
Zhang Z, Chen X, Tian Y, Li F, Zhao X, Liu J, et al. Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR‐T cell therapy. J Immunother Cancer. 2020;8(2):e001150. https://doi.org/10.1136/jitc-2020-001150
Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14(1):199. https://doi.org/10.1186/s13045-021-01209-9
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x
Scholler N, Perbost R, Locke FL, Jain MD, Turcan S, Danan C, et al. Tumor immune contexture is a determinant of anti‐CD19 CAR T cell efficacy in large B cell lymphoma. Nat Med. 2022;28(9):1872–82. https://doi.org/10.1038/s41591-022-01916-x
Palmer MK. WHO handbook for reporting results of cancer treatment. Br J Cancer. 1982;45:484–5. https://doi.org/10.1038/bjc.1982.83
Dean EA, Mhaskar RS, Lu H, Mousa MS, Krivenko GS, Lazaryan A, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B‐cell lymphoma. Blood Adv. 2020;4(14):3268–76. https://doi.org/10.1182/bloodadvances.2020001900
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6(1):404. https://doi.org/10.1038/s41392-021-00817-8
Wang W, Sun X, Jin W. Determination of lactate dehydrogenase in human erythrocytes by capillary electrophoresis with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;798(1):175–8. https://doi.org/10.1016/j.jchromb.2003.09.036
Komoda T, Sakagishi Y, Mizushima H. Determination of isoenzyme contents of lactic dehydrogenase activity and 2‐hydroxybutyric dehydrogenase activity in lactic dehydrogenase preparations. Clin Chim Acta. 1976;72(3):285–93. https://doi.org/10.1016/0009-8981(76)90190-x
Arabi F, Torabi‐Rahvar M, Shariati A, Ahmadbeigi N, Naderi M. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Exp Cell Res. 2018;369(1):1–10. https://doi.org/10.1016/j.yexcr.2018.05.009
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.