AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

High‐throughput screening and biological display technology: Applications in molecular imaging

Renli Luo1Hongguang Liu1( )Zhen Cheng2,3 ( )
Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
Show Author Information

Graphical Abstract

Abstract

Molecular imaging plays important roles in many fields, including disease diagnosis, therapeutic efficacy evaluation, intraoperative imaging guidance, drug metabolism monitoring, and patient selection for appropriate treatment. As a key component, the targeting ligand determines the specificity, affinity, and in vivo performance of molecular imaging probes. In this review, high‐throughput screening and biological display platforms for the discovery of ligands applicable to molecular imaging are briefly reviewed. Basic information on ligand development for molecular imaging is first introduced, followed by a presentation of various selection platforms and typical or iterative cases. The features, advantages, limitations, and application scope of screening and display platforms are compared and discussed. Last, a basic selection strategy and a perspective for protein‐based ligands are provided.

References

[1]

James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965. https://doi.org/10.1152/physrev.00049.2010

[2]

Rowe SP, Pomper MG. Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin. 2022;72(4):333–52. https://doi.org/10.3322/caac.21713

[3]

Wu M, Shu J. Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging. 2018;2018:1382183. https://doi.org/10.1155/2018/1382183

[4]

Hussain S, Mubeen I, Ullah N, Shah S, Khan BA, Zahoor M, et al. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed Res Int. 2022;2022:5164970. https://doi.org/10.1155/2022/5164970

[5]

Chopra A, Shan L, Eckelman WC, Leung K, Latterner M, Bryant SH, et al. Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress. Mol Imag Biol. 2012;14(1):4–13. https://doi.org/10.1007/s11307-011-0521-3

[6]

Lei Z, Ding L, Yao C, Mo F, Li C, Huang Y, et al. A highly efficient tumor‐targeting nanoprobe with a novel cell membrane permeability mechanism. Adv Mat. 2019;31(12):e1807456. https://doi.org/10.1002/adma.201807456

[7]

Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep. 2016;33(6):761–800. https://doi.org/10.1039/c5np00083a

[8]
Roy A. High‐throughput screening (HTS) technology. In: Offermanns S, Rosenthal W, editors. Encyclopedia of molecular pharmacology. Cham: Springer International Publishing; 2021. p. 787–99.
[9]

Ko YJ, Kim WJ, Kim K, Kwon IC. Advances in the strategies for designing receptor‐targeted molecular imaging probes for cancer research. J Contr Release. 2019;305:1–17. https://doi.org/10.1016/j.jconrel.2019.04.030

[10]

Zhao N, Qin Y, Liu H, Cheng Z. Tumor‐targeting peptides: ligands for molecular imaging and therapy. Anti Cancer Agents Med Chem. 2018;18(1):74–86. https://doi.org/10.2174/1871520617666170419143459

[11]

Cao R, Liu H, Cheng Z. Radiolabeled peptide probes for liver cancer imaging. Curr Med Chem. 2020;27(41):6968–86. https://doi.org/10.2174/0929867327666200320153837

[12]

Li X, Craven TW, Levine PM. Cyclic peptide screening methods for preclinical drug discovery. J Med Chem. 2022;65(18):11913–26. https://doi.org/10.1021/acs.jmedchem.2c01077

[13]

Luo R, Liu H, Cheng Z. Protein scaffolds: antibody alternatives for cancer diagnosis and therapy. RSC Chem Biol. 2022;3(7):830–47. https://doi.org/10.1039/d2cb00094f

[14]

Yang EY, Shah K. Nanobodies: next generation of cancer diagnostics and therapeutics. Front Oncol. 2020;10:1182. https://doi.org/10.3389/fonc.2020.01182

[15]

Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Targeted Ther. 2022;7(1):39. https://doi.org/10.1038/s41392-021-00868-x

[16]
Chia Chiu L, Yee Siew C, Theam Soon L. High affinity maturated human antibodies from naïve and synthetic antibody repertoires. In: Thomas B, editor. Antibody engineering. Rijeka: IntechOpen; 2017. p. Ch. 2.
[17]

Liu R, Li X, Xiao W, Lam KS. Tumor‐targeting peptides from combinatorial libraries. Adv Drug Deliv Rev. 2017;110–111:13–37. https://doi.org/10.1016/j.addr.2016.05.009

[18]

Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol. 2022;208:421–42. https://doi.org/10.1016/j.ijbiomac.2022.03.113

[19]

Zeng W, Guo L, Xu S, Chen J, Zhou J. High‐throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38(8):888–906. https://doi.org/10.1016/j.tibtech.2020.01.001

[20]

Jaroszewicz W, Morcinek‐Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev. 2022;46(2). https://doi.org/10.1093/femsre/fuab052

[21]

Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019;10(11):787–807. https://doi.org/10.1007/s13238-019-0639-7

[22]
SidhuSSEngineering M13 for phage displayBiomol Eng2001182576310.1016/s1389-0344(01)00087-9

Sidhu SS. Engineering M13 for phage display. Biomol Eng. 2001;18(2):57–63. https://doi.org/10.1016/s1389-0344(01)00087-9

[23]

Deng X, Wang L, You X, Dai P, Zeng Y. Advances in the T7 phage display system (Review). Mol Med Rep. 2018;17(1):714–20. https://doi.org/10.3892/mmr.2017.7994

[24]

Brown KC. Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr Pharmaceut Des. 2010;16(9):1040–54. https://doi.org/10.2174/138161210790963788

[25]

Karasseva NG, Glinsky VV, Chen NX, Komatireddy R, Quinn TP. Identification and characterization of peptides that bind human ErbB‐2 selected from a bacteriophage display library. J Protein Chem. 2002;21(4):287–96. https://doi.org/10.1023/a:1019749504418

[26]

Shadidi M, Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. Faseb J. 2003;17(2):256–8. https://doi.org/10.1096/fj.02-0280fje

[27]

Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, et al. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER‐2‐overexpressing tumor cells. Int J Nanomed. 2017;12:501–14. https://doi.org/10.2147/ijn.s113607

[28]

Xing L, Xu Y, Sun K, Wang H, Zhang F, Zhou Z, et al. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep. 2018;8(1):8426. https://doi.org/10.1038/s41598-018-26683-z

[29]

Pola R, Böhmová E, Filipová M, Pechar M, Pankrác J, Větvička D, et al. Targeted polymer‐based probes for fluorescence guided visualization and potential surgery of EGFR‐positive head‐and‐neck tumors. Pharmaceutics. 2020;12(1):31. https://doi.org/10.3390/pharmaceutics12010031

[30]

Joshi BP, Dai Z, Gao Z, Lee JH, Ghimire N, Chen J, et al. Detection of sessile serrated adenomas in the proximal colon using wide‐field fluorescence endoscopy. Gastroenterology. 2017;152(5):1002–13.e9. https://doi.org/10.1053/j.gastro.2016.12.009

[31]

Zhang D, Huang J, Li W, Zhang Z, Zhu M, Feng Y, et al. Screening and identification of a CD44v6 specific peptide using improved phage display for gastric cancer targeting. Ann Transl Med. 2020;8(21):1442. https://doi.org/10.21037/atm-19-4781

[32]

Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem Biol. 2022;3(1):18–31. https://doi.org/10.1039/d1cb00154j

[33]

Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for backbone macrocyclic peptide synthesis compatible with screening technologies. Front Chem. 2020;8:447. https://doi.org/10.3389/fchem.2020.00447

[34]
OwensAEIannuzzelliJAGuYFasanRMOrPH‐PhD: an integrated phage display platform for the discovery of functional genetically encoded peptide macrocyclesACS Cent Sci2020633688110.1021/acscentsci.9b00927

Owens AE, Iannuzzelli JA, Gu Y, Fasan R. MOrPH‐PhD: an integrated phage display platform for the discovery of functional genetically encoded peptide macrocycles. ACS Cent Sci. 2020;6(3):368–81. https://doi.org/10.1021/acscentsci.9b00927

[35]

Chen S, Lovell S, Lee S, Fellner M, Mace PD, Bogyo M. Identification of highly selective covalent inhibitors by phage display. Nat Biotechnol. 2021;39(4):490–8. https://doi.org/10.1038/s41587-020-0733-7

[36]

Cho HJ, Park SJ, Lee YS, Kim S. Theranostic iRGD peptide containing cisplatin prodrug: dual‐cargo tumor penetration for improved imaging and therapy. J Contr Release. 2019;300:73–80. https://doi.org/10.1016/j.jconrel.2019.02.043

[37]

Burggraaf J, Kamerling IM, Gordon PB, Schrier L, de Kam ML, Kales AJ, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c‐Met. Nat Med. 2015;21(8):955–61. https://doi.org/10.1038/nm.3641

[38]

Ye XX, Zhao YY, Wang Q, Xiao W, Zhao J, Peng YJ, et al. EDB fibronectin‐specific SPECT probe (99m)Tc‐HYNIC‐ZD2 for breast cancer detection. ACS Omega. 2017;2(6):2459–68. https://doi.org/10.1021/acsomega.7b00226

[39]

Yan J, Yu X, Chen X, Liu F, Chen F, Ding N, et al. Identification of a glypican‐3 binding peptide from a phage‐displayed peptide library for PET imaging of hepatocellular carcinoma. Front Oncol. 2021;11:679336. https://doi.org/10.3389/fonc.2021.679336

[40]

Yang X, Li Y, Zhu Z, Huang X, Wang T, Yuan J, et al. Identification of a peptide that crosses the blood‐cerebrospinal fluid barrier by phage display technology. Amino Acids. 2021;53(8):1181–6. https://doi.org/10.1007/s00726-021-03016-5

[41]

Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren P, Löfblom J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 2017;35(8):691–712. https://doi.org/10.1016/j.tibtech.2017.04.007

[42]

Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu‐binding affibody ligands. Protein Eng Des Sel. 2004;17(5):455–62. https://doi.org/10.1093/protein/gzh053

[43]

Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Höidén‐Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006;66(8):4339–48. https://doi.org/10.1158/0008-5472.can-05-3521

[44]

Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A, Wennborg A, et al. Molecular imaging of HER2‐expressing malignant tumors in breast cancer patients using synthetic 111In‐ or 68Ga‐labeled affibody molecules. J Nucl Med. 2010;51(6):892–7. https://doi.org/10.2967/jnumed.109.073239

[45]

Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjöberg A, Larsson B, et al. Design of an optimized scaffold for affibody molecules. J Mol Biol. 2010;398(2):232–47. https://doi.org/10.1016/j.jmb.2010.03.002

[46]

Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2‐receptor expression in metastatic breast cancer using [68Ga]ABY‐025 affibody PET/CT. Theranostics. 2016;6(2):262–71. https://doi.org/10.7150/thno.13502

[47]

Woldring DR, Holec PV, Stern LA, Du Y, Hackel BJ. A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three‐helix bundle protein scaffold. Biochemistry. 2017;56(11):1656–71. https://doi.org/10.1021/acs.biochem.6b01142

[48]

Moreno E, Valdés‐Tresanco MS, Molina‐Zapata A, Sánchez‐Ramos O. Structure‐based design and construction of a synthetic phage display nanobody library. BMC Res Notes. 2022;15(1):124. https://doi.org/10.1186/s13104-022-06001-7

[49]

Liu B, Yang D. Easily established and multifunctional synthetic nanobody libraries as research tools. Int J Mol Sci. 2022;23(3):1482. https://doi.org/10.3390/ijms23031482

[50]

Ma J, Xu X, Fu C, Xia P, Tian M, Zheng L, et al. CDH17 nanobodies facilitate rapid imaging of gastric cancer and efficient delivery of immunotoxin. Biomater Res. 2022;26(1):64. https://doi.org/10.1186/s40824-022-00312-3

[51]

Yu X, Long Y, Chen B, Tong Y, Shan M, Jia X, et al. PD‐L1/TLR7 dual‐targeting nanobody‐drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host‐expressed PD‐L1 bias‐dependent way. J Immunother Cancer. 2022;10(10):e004590. https://doi.org/10.1136/jitc-2022-004590

[52]

Maruthachalam BV, El‐Sayed A, Liu J, Sutherland AR, Hill W, Alam MK, et al. A single‐framework synthetic antibody library containing a combination of canonical and variable complementarity‐determining regions. Chembiochem. 2017;18(22):2247–59. https://doi.org/10.1002/cbic.201700279

[53]

El‐Sayed A, Bernhard W, Barreto K, Gonzalez C, Hill W, Pastushok L, et al. Evaluation of antibody fragment properties for near‐infrared fluorescence imaging of HER3‐positive cancer xenografts. Theranostics. 2018;8(17):4856–69. https://doi.org/10.7150/thno.24252

[54]

Hintz HM, Cowan AE, Shapovalova M, LeBeau AM. Development of a cross‐reactive monoclonal antibody for detecting the tumor stroma. Bioconjugate Chem. 2019;30(5):1466–76. https://doi.org/10.1021/acs.bioconjchem.9b00206

[55]

Diebolder P, Mpoy C, Scott J, Huynh TT, Fields R, Spitzer D, et al. Preclinical evaluation of an engineered single‐chain fragment variable‐fragment crystallizable targeting human CD44. J Nucl Med. 2021;62(1):137–43. https://doi.org/10.2967/jnumed.120.249557

[56]

Löfblom J. Bacterial display in combinatorial protein engineering. Biotechnol J. 2011;6(9):1115–29. https://doi.org/10.1002/biot.201100129

[57]

Mazor Y, Van Blarcom T, Iverson BL, Georgiou G. Isolation of full‐length IgG antibodies from combinatorial libraries expressed in Escherichia coli. Methods Mol Biol. 2009;525:217–39, xiv. https://doi.org/10.1007/978-1-59745-554-1_11

[58]

Friedrich L, Kornberger P, Mendler CT, Multhoff G, Schwaiger M, Skerra A. Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models. Biol Chem. 2018;399(3):235–52. https://doi.org/10.1515/hsz-2017-0207

[59]

Kronqvist N, Malm M, Göstring L, Gunneriusson E, Nilsson M, Höidén Guthenberg I, et al. Combining phage and staphylococcal surface display for generation of ErbB3‐specific affibody molecules. Protein Eng Des Sel. 2011;24(4):385–96. https://doi.org/10.1093/protein/gzq118

[60]

Malm M, Kronqvist N, Lindberg H, Gudmundsdotter L, Bass T, Frejd FY, et al. Inhibiting HER3‐mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position‐directed error‐prone PCR‐like diversification. PLoS One. 2013;8(5):e62791. https://doi.org/10.1371/journal.pone.0062791

[61]

Dahlsson Leitao C, Rinne SS, Mitran B, Vorobyeva A, Andersson KG, Tolmachev V, et al. Molecular design of HER3‐targeting affibody molecules: influence of chelator and presence of HEHEHE‐tag on biodistribution of (68)Ga‐labeled tracers. Int J Mol Sci. 2019;20(5):1080. https://doi.org/10.3390/ijms20051080

[62]

Fleetwood F, Klint S, Hanze M, Gunneriusson E, Frejd FY, Ståhl S, et al. Simultaneous targeting of two ligand‐binding sites on VEGFR2 using biparatopic affibody molecules results in dramatically improved affinity. Sci Rep. 2014;4(1):7518. https://doi.org/10.1038/srep07518

[63]

Fleetwood F, Güler R, Gordon E, Ståhl S, Claesson‐Welsh L, Löfblom J. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell Mol Life Sci. 2016;73(8):1671–83. https://doi.org/10.1007/s00018-015-2088-7

[64]

Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, et al. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof‐of‐principle in a murine model. Theranostics. 2018;8(16):4462–76. https://doi.org/10.7150/thno.24395

[65]

Teymennet‐Ramírez KV, Martínez‐Morales F, Trejo‐Hernández MR. Yeast surface display system: strategies for improvement and biotechnological applications. Front Bioeng Biotechnol. 2021;9:794742. https://doi.org/10.3389/fbioe.2021.794742

[66]

Könning D, Kolmar H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Factories. 2018;17(1):32. https://doi.org/10.1186/s12934-018-0881-3

[67]

Bam R, Lown PS, Stern LA, Sharma K, Wilson KE, Bean GR, et al. Efficacy of affibody‐based ultrasound molecular imaging of vascular B7‐H3 for breast cancer detection. Clin Cancer Res. 2020;26(9):2140–50. https://doi.org/10.1158/1078-0432.ccr-19-1655

[68]

Case BA, Kruziki MA, Johnson SM, Hackel BJ. Engineered charge redistribution of Gp2 proteins through guided diversity for improved PET imaging of epidermal growth factor receptor. Bioconjugate Chem. 2018;29(5):1646–58. https://doi.org/10.1021/acs.bioconjchem.8b00144

[69]

Lu Z, Kamat K, Johnson BP, Yin CC, Scholler N, Abbott KL. Generation of a fully human scFv that binds tumor‐specific glycoforms. Sci Rep. 2019;9(1):5101. https://doi.org/10.1038/s41598-019-41567-6

[70]

Abou‐Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, et al. Thy1‐Targeted microbubbles for ultrasound molecular imaging of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2018;24(7):1574–85. https://doi.org/10.1158/1078-0432.ccr-17-2057

[71]

Kimura RH, Jones DS, Jiang L, Miao Z, Cheng Z, Cochran JR. Functional mutation of multiple solvent‐exposed loops in the Ecballium elaterium trypsin inhibitor‐II cystine knot miniprotein. PLoS One. 2011;6(2):e16112. https://doi.org/10.1371/journal.pone.0016112

[72]

Jiang L, Zhu H, Li Y, Wu X, Wang H, Cheng Z. Detecting vulnerable atherosclerotic plaques by (68)Ga‐labeled divalent cystine knot peptide. Mol Pharm. 2019;16(3):1350–7. https://doi.org/10.1021/acs.molpharmaceut.8b01291

[73]

Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, et al. Evaluation of integrin αvβ(6) cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun. 2019;10(1):4673. https://doi.org/10.1038/s41467-019-11863-w

[74]

Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA. 1994;91(19):9022–6. https://doi.org/10.1073/pnas.91.19.9022

[75]

Plückthun A. Ribosome display: a perspective. Methods Mol Biol. 2012;805:3–28. https://doi.org/10.1007/978-1-61779-379-0_1

[76]

Lagoutte P. [Ribosome display: evolution and acellular selection of molecular libraries for high affinity binder generation]. M‐S (Med Sci). 2020;36(8–9):717–24. https://doi.org/10.1051/medsci/2020126

[77]

Li R, Kang G, Hu M, Huang H. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties. Mol Biotechnol. 2019;61(1):60–71. https://doi.org/10.1007/s12033-018-0133-0

[78]

Petroková H, Mašek J, Kuchař M, Vítečková Wünschová A, Štikarová J, Bartheldyová E, et al. Targeting human thrombus by liposomes modified with anti‐fibrin protein binders. Pharmaceutics. 2019;11(12):642. https://doi.org/10.3390/pharmaceutics11120642

[79]
KosarevaAPunjabiMOchoa‐EspinosaAXuLSchaeferJVDreierBDesigned Ankyrin repeat proteins as novel binders for ultrasound molecular imagingUltrasound Med Biol202147926647510.1016/j.ultrasmedbio.2021.04.027

Kosareva A, Punjabi M, Ochoa‐Espinosa A, Xu L, Schaefer JV, Dreier B, et al. Designed Ankyrin repeat proteins as novel binders for ultrasound molecular imaging. Ultrasound Med Biol. 2021;47(9):2664–75. https://doi.org/10.1016/j.ultrasmedbio.2021.04.027

[80]

Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev. 2021;50(16):9055–103. https://doi.org/10.1039/d1cs00160d

[81]
LiSMillwardSRobertsRIn vitro selection of mRNA display libraries containing an unnatural amino acidJ Am Chem Soc2002124349972310.1021/ja026789q

Li S, Millward S, Roberts R. In vitro selection of mRNA display libraries containing an unnatural amino acid. J Am Chem Soc. 2002;124(34):9972–3. https://doi.org/10.1021/ja026789q

[82]

Alleyne C, Amin RP, Bhatt B, Bianchi E, Blain JC, Boyer N, et al. Series of novel and highly potent cyclic peptide PCSK9 inhibitors derived from an mRNA display screen and optimized via structure‐based design. J Med Chem. 2020;63(22):13796–824. https://doi.org/10.1021/acs.jmedchem.0c01084

[83]

Grindel BJ, Engel BJ, Ong JN, Srinivasamani A, Liang X, Zacharias NM, et al. Directed evolution of PD‐L1‐targeted affibodies by mRNA display. ACS Chem Biol. 2022;17(6):1543–55. https://doi.org/10.1021/acschembio.2c00218

[84]

Fiacco SV, Kelderhouse LE, Hardy A, Peleg Y, Hu B, Ornelas A, et al. Directed evolution of scanning unnatural‐protease‐resistant (SUPR) peptides for in vivo applications. Chembiochem. 2016;17(17):1643–51. https://doi.org/10.1002/cbic.201600253

[85]

Kamalinia G, Engel BJ, Srinivasamani A, Grindel BJ, Ong JN, Curran MA, et al. mRNA display discovery of a novel programmed death ligand 1 (PD‐L1) binding peptide (a peptide ligand for PD‐L1). ACS Chem Biol. 2020;15(6):1630–41. https://doi.org/10.1021/acschembio.0c00264

[86]

Sakai K, Passioura T, Sato H, Ito K, Furuhashi H, Umitsu M, et al. Macrocyclic peptide‐based inhibition and imaging of hepatocyte growth factor. Nat Chem Biol. 2019;15(6):598–606. https://doi.org/10.1038/s41589-019-0285-7

iRADIOLOGY
Pages 18-35
Cite this article:
Luo R, Liu H, Cheng Z. High‐throughput screening and biological display technology: Applications in molecular imaging. iRADIOLOGY, 2023, 1(1): 18-35. https://doi.org/10.1002/ird3.11

508

Views

26

Downloads

3

Crossref

Altmetrics

Received: 10 February 2023
Accepted: 22 February 2023
Published: 27 March 2023
© 2023 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Return