AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (777.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Metabolic and textural changes in the brain of non‐small cell lung cancer patients: A total‐body positron emission tomography/computed tomography study

Xue Xie1,Weizhao Lu1,Depeng Ma1Sijin Liu2,3Yanhua Duan4Kun Li4Zhaoping Cheng4( )Jianfeng Qiu1 ( )
School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco‐Environment Sciences, Chinese Academy of Sciences, Beijing, China
Department of PET‐CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China

Xue Xie and Weizhao Lu have contributed equally to this work.

Show Author Information

Graphical Abstract

Non‐small cell lung cancer patients exhibited altered brain glucose uptake in several regions. The aberrant brain glucose uptake may be related to lung‐brain interactions or brain metastases. Machine learning identified several biomarkers for brain metastasis and lung‐brain interactions.

Abstract

Background

Brain metastases are frequent complications for lung cancer patients. However, changes in the brain of lung cancer patients have received little attention. We aimed to explore whether alterations in brain glucose uptake and brain texture occur in non‐small cell lung cancer (NSCLC) patients and to investigate associations between brain alterations and NSCLC via the uEXPLORER positron emission tomography/computed tomography (PET/CT) system.

Methods

In total, 105 participants were enrolled, including 55 healthy controls and 50 NSCLC patients. Images were acquired using the PET/CT system. Standardized uptake values normalized by lean body mass were calculated as indicators of glucose uptake. Correlation analysis was conducted between aberrant brain glucose uptake, glucose uptake of cancer lesions, and concentrations of serum lung cancer markers. Radiomics was used to investigate whether features extracted from regions with altered brain glucose uptake could serve as biomarkers of lung cancer progression.

Results

Compared with healthy controls, NSCLC patients showed decreased standardized uptake values normalized by lean body mass in the left insula, medial frontal gyrus, and anterior cingulate. Correlation analysis demonstrated that glucose uptake of the anterior cingulate was negatively correlated with serum lung cancer marker concentrations. Radiomic features on PET/CT images of the above brain regions could classify NSCLC patients and healthy controls with an accuracy of 79%.

Conclusions

NSCLC patients exhibited altered brain glucose uptake and changes in brain textures. These alterations may reflect alterations in behavioral domains in NSCLC and may be related to altered lung‐brain interactions and potential brain metastasis of NSCLC.

Electronic Supplementary Material

Download File(s)
ird-1-2-109_ESM.docx (2 MB)

References

[1]

Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin. 2016;25(3):447–68. https://doi.org/10.1016/j.soc.2016.02.003

[2]

Herbst RS, Morgensztern D, Boshoff C. The biology and management of non‐small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183

[3]

Pahk K, Kim EJ, Lee YJ, Kim S, Seo HS. Characterization of glucose uptake metabolism in visceral fat by 18 F‐FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS One. 2020;15(2):e0228602. https://doi.org/10.1371/journal.pone.0228602

[4]

Usmanij EA, de Geus‐Oei LF, Bussink J, Oyen WJ. Update on F‐18‐fluoro‐deoxy‐glucose‐PET/computed tomography in nonsmall cell lung cancer. Curr Opin Pulm Med. 2015;21(4):314–21. https://doi.org/10.1097/mcp.0000000000000182

[5]

Li J, Xu W, Kong F, Sun X, Zuo X. Meta‐analysis: accuracy of 18FDG PET‐CT for distant metastasis staging in lung cancer patients. Surg Oncol. 2013;22(3):151–5. https://doi.org/10.1016/j.suronc.2013.04.001

[6]

Yang F, Young LA, Johnson PB. Quantitative radiomics: validating image textural features for oncological PET in lung cancer. Radiother Oncol. 2018;129(2):209–17. https://doi.org/10.1016/j.radonc.2018.09.009

[7]

Romaszko AM, Doboszynska A. Multiple primary lung cancer: a literature review. Adv Clin Exp Med. 2018;27(5):725–30. https://doi.org/10.17219/acem/68631

[8]

Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung‐molGPA). JAMA Oncol. 2017;3(6):827–31. https://doi.org/10.1001/jamaoncol.2016.3834

[9]

Cui L, Li H, Hui W, Chen S, Yang L, Kang Y, et al. A deep learning‐based framework for lung cancer survival analysis with biomarker interpretation. BMC Bioinf. 2020;21(1):112. https://doi.org/10.1186/s12859-020-3431-z

[10]

Simo M, Root JC, Vaquero L, Ripollés P, Jové J, Ahles T, et al. Cognitive and brain structural changes in a lung cancer population. J Thorac Oncol. 2015;10(1):38–45. https://doi.org/10.1097/jto.0000000000000345

[11]

Aydin S, Demir T, Turk HM, Cesme DH, Aliyev A, Ali Gultekin M, et al. Evaluation of toxic effects of chemotherapy in lung malignancies on cerebral white matter using diffusion tensor imaging. Radiol Oncol. 2022;56(2):150–5. https://doi.org/10.2478/raon-2022-0017

[12]

Simo M, Vaquero L, Ripolles P, Gurtubay‐Antolin A, Jové J, Navarro A, et al. Longitudinal brain changes associated with prophylactic cranial irradiation in lung cancer. J Thorac Oncol. 2016;11(4):475–86. https://doi.org/10.1016/j.jtho.2015.12.110

[13]

Ziebart A, Schaefer MM, Thomas R, Kamuf J, Garcia‐Bardon A, Möllmann C, et al. Random allogeneic blood transfusion in pigs: characterisation of a novel experimental model. PeerJ. 2019;7:e7439. https://doi.org/10.7717/peerj.7439

[14]

Chen T, Chen C, Zhang Z, Zou Y, Peng M, Wang Y. Toll‐like receptor 4 knockout ameliorates neuroinflammation due to lung‐brain interaction in mechanically ventilated mice. Brain Behav Immun. 2016;56:42–55. https://doi.org/10.1016/j.bbi.2016.04.004

[15]

Zhang W, Ning N, Li X, Niu G, Bai L, Guo Y, et al. Changes of brain glucose metabolism in the pretreatment patients with non‐small cell lung cancer: a retrospective PET/CT study. PLoS One. 2016;11(8):e0161325. https://doi.org/10.1371/journal.pone.0161325

[16]

Sun T, Wang Z, Wu Y, Gu F, Li X, Bai Y, et al. Identifying the individual metabolic abnormities from a systemic perspective using whole‐body PET imaging. Eur J Nucl Med Mol Imag. 2022;49(8):2994–3004. https://doi.org/10.1007/s00259-022-05832-7

[17]

Seike T, Fujita K, Yamakawa Y, Kido MA, Takiguchi S, Teramoto N, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis. 2011;28(1):13–25. https://doi.org/10.1007/s10585-010-9354-8

[18]

Shih DJH, Nayyar N, Bihun I, Dagogo‐Jack I, Gill CM, Aquilanti E, et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat Genet. 2020;52(4):371–7. https://doi.org/10.1038/s41588-020-0592-7

[19]

Venkatesan A, Jagdish B. Imaging in encephalitis. Semin Neurol. 2019;39(3):312–21. https://doi.org/10.1055/s-0039-1687838

[20]

Jassam SA, Maherally Z, Smith JR, Ashkan K, Roncaroli F, Fillmore HL, et al. TNF‐alpha enhancement of CD62E mediates adhesion of non‐small cell lung cancer cells to brain endothelium via CD15 in lung‐brain metastasis. Neuro Oncol. 2016;18(5):679–90. https://doi.org/10.1093/neuonc/nov248

[21]

Yuzhalin AE, Yu D. Brain metastasis organotropism. Cold Spring Harb Perspect Med. 2020;10(5):a037242. https://doi.org/10.1101/cshperspect.a037242

[22]

Sundar LKS, Hacker M, Beyer T. Whole‐body PET imaging: a catalyst for whole‐person research? J Nucl Med. 2023;64(2):197–9. https://doi.org/10.2967/jnumed.122.264555

[23]

Reed MB, Ponce de Leon M, Vraka C, Rausch I, Godbersen GM, Popper V, et al. Whole‐body metabolic connectivity framework with functional PET. Neuroimage. 2023;271:120030. https://doi.org/10.1016/j.neuroimage.2023.120030

[24]

Zhang YQ, Hu PC, Wu RZ, Gu YS, Chen SG, Yu HJ, et al. The image quality, lesion detectability, and acquisition time of (18)F‐FDG total‐body PET/CT in oncological patients. Eur J Nucl Med Mol Imag. 2020;47(11):2507–15. https://doi.org/10.1007/s00259-020-04823-w

[25]

Looijaard W, Molinger J, Weijs PJM. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24(4):241–7. https://doi.org/10.1097/mcc.0000000000000511

[26]

Koutsouleris N, Kambeitz‐Ilankovic L, Ruhrmann S, Rosen M, Ruef A, Dwyer DB, et al. Prediction models of functional outcomes for individuals in the clinical high‐risk state for psychosis or with recent‐onset depression: a multimodal, multisite machine learning analysis. JAMA Psychiatr. 2018;75(11):1156–72. https://doi.org/10.1001/jamapsychiatry.2018.2165

[27]

Deng L, Zhang QC, Chen Z, Meng Y, Guan J, Zhou S. PredHS: a web server for predicting protein‐protein interaction hot spots by using structural neighborhood properties. Nucleic Acids Res. 2014;42(Web Server issue):W290–5. https://doi.org/10.1093/nar/gku437

[28]
Chang CC. LIBSVM: a library for support vector machines;2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm
[29]

Gafoor K, Patel S, Girvin F, Gupta N, Naidich D, Machnicki S, et al. Cavitary lung diseases: a clinical‐radiologic algorithmic approach. Chest. 2018;153(6):1443–65. https://doi.org/10.1016/j.chest.2018.02.026

[30]

Waqar SN, Samson PP, Robinson CG, Bradley J, Devarakonda S, Du L, et al. Non‐small‐cell lung cancer with brain metastasis at presentation. Clin Lung Cancer. 2018;19(4):e373–9. https://doi.org/10.1016/j.cllc.2018.01.007

[31]

Liu S, Yin N, Li C, Li X, Ni J, Pan X, et al. Topological abnormalities of pallido‐thalamo‐cortical circuit in functional brain network of patients with nonchemotherapy with non‐small cell lung cancer. Front Neurol. 2022;13:821470. https://doi.org/10.3389/fneur.2022.821470

[32]

He D, Wang D, Lu P, Yang N, Xue Z, Zhu X, et al. Single‐cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early‐stage lung adenocarcinomas harboring EGFR mutations. Oncogene. 2021;40(2):355–68. https://doi.org/10.1038/s41388-020-01528-0

[33]

Tan H, Gu Y, Yu H, Hu P, Zhang Y, Mao W, et al. Total‐body PET/CT: current applications and future perspectives. AJR Am J Roentgenol. 2020;215(2):325–37. https://doi.org/10.2214/ajr.19.22705

[34]

Nadig V, Herrmann K, Mottaghy FM, Schulz V. Hybrid total‐body pet scanners‐current status and future perspectives. Eur J Nucl Med Mol Imag. 2022;49(2):445–59. https://doi.org/10.1007/s00259-021-05536-4

[35]

Henrich TJ, Jones T, Beckford‐Vera D, Price PM, VanBrocklin HF. Total‐body PET imaging in infectious diseases. Pet Clin. 2021;16(1):89–97. https://doi.org/10.1016/j.cpet.2020.09.011

[36]

Sui X, Liu G, Hu P, Chen S, Yu H, Wang Y, et al. Total‐body PET/computed tomography highlights in clinical practice: experiences from Zhongshan Hospital, Fudan University. PET Clin. 2021;16(1):9–14. https://doi.org/10.1016/j.cpet.2020.09.007

[37]

Molina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem. 2004;37(7):505–11. https://doi.org/10.1016/j.clinbiochem.2004.05.007

[38]

Hosang L, Canals RC, van der Flier FJ, Hollensteiner J, Daniel R, Flügel A, et al. The lung microbiome regulates brain autoimmunity. Nature. 2022;603(7899):138–44. https://doi.org/10.1038/s41586-022-04427-4

[39]

Best MG, Wesseling P, Wurdinger T. Tumor‐educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407–12. https://doi.org/10.1158/0008-5472.can-18-0887

[40]

Siegelin MD, Borczuk AC. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest. 2014;94(2):129–37. https://doi.org/10.1038/labinvest.2013.147

[41]

Jin Y, Li JP, Tang LY, et al. Protein expression and significance of VEGF, EGFR and MMP‐9 in non‐small cell lung carcinomas. Asian Pac J Cancer Prev. 2011;12(6):1473–6.

[42]

Huang SF, Liu HP, Li LH, Ku YC, Fu YN, Tsai HY, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non‐small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res. 2004;10(24):8195–203. https://doi.org/10.1158/1078-0432.ccr-04-1245

[43]

Deng H, Xiao X, Yang T, Ritola K, Hantman A, Li Y, et al. A genetically defined insula‐brainstem circuit selectively controls motivational vigor. Cell. 2021;184(26):6344–60.e6318. https://doi.org/10.1016/j.cell.2021.11.019

[44]

Gogolla N. The brain remembers where and how inflammation struck. Cell. 2021;184(24):5851–3. https://doi.org/10.1016/j.cell.2021.11.002

[45]

Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cognit Sci. 2011;15(2):85–93. https://doi.org/10.1016/j.tics.2010.11.004

[46]

Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, et al. Brain metastases. Nat Rev Dis Prim. 2019;5(1):5. https://doi.org/10.1038/s41572-018-0055-y

[47]

Yousefi M, Bahrami T, Salmaninejad A, Nosrati R, Ghaffari P, Ghaffari SH. Lung cancer‐associated brain metastasis: molecular mechanisms and therapeutic options. Cell Oncol. 2017;40(5):419–41. https://doi.org/10.1007/s13402-017-0345-5

[48]

Lin B, Huang D, Yang X, Zhang Y, Gang F, Du XB. Distribution of brain metastases: low‐risk metastasis areas may be avoided when treating with whole‐brain radiotherapy. Cancer Imag. 2020;20(1):29. https://doi.org/10.1186/s40644-020-00309-y

[49]

Wang Y, Xia W, Liu B, Zhou L, Ni M, Zhang R, et al. Exploration of spatial distribution of brain metastasis from small cell lung cancer and identification of metastatic risk level of brain regions: a multicenter, retrospective study. Cancer Imag. 2021;21(1):41. https://doi.org/10.1186/s40644-021-00410-w

[50]

Takano K, Kinoshita M, Takagaki M, Sakai M, Tateishi S, Achiha T, et al. Different spatial distributions of brain metastases from lung cancer by histological subtype and mutation status of epidermal growth factor receptor. Neuro Oncol. 2016;18(5):716–24. https://doi.org/10.1093/neuonc/nov266

[51]

Ouyang Z, Zhao S, Cheng Z, Duan Y, Chen Z, Zhang N, et al. Dynamic PET imaging using dual texture features. Front Comput Neurosci. 2021;15:819840. https://doi.org/10.3389/fncom.2021.819840

[52]

Aksu A, Karahan Sen NP, Acar E, Capa Kaya G. Evaluating focal (18)F‐FDG uptake in thyroid gland with radiomics. Nucl Med Mol Imaging. 2020;54(5):241–8. https://doi.org/10.1007/s13139-020-00659-2

[53]

Tan J, Gao Y, Liang Z, Cao W, Pomeroy MJ, Huo Y, et al. 3D‐GLCM CNN: a 3‐dimensional gray‐level co‐occurrence matrix‐based CNN model for polyp classification via CT colonography. IEEE Trans Med Imag. 2020;39(6):2013–24. https://doi.org/10.1109/tmi.2019.2963177

iRADIOLOGY
Pages 109-119
Cite this article:
Xie X, Lu W, Ma D, et al. Metabolic and textural changes in the brain of non‐small cell lung cancer patients: A total‐body positron emission tomography/computed tomography study. iRADIOLOGY, 2023, 1(2): 109-119. https://doi.org/10.1002/ird3.21

409

Views

31

Downloads

2

Crossref

Altmetrics

Received: 24 April 2023
Accepted: 17 May 2023
Published: 06 June 2023
© 2023 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Return