Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Non‐invasive, real‐time, dynamic, and quantitative molecular imaging has been developed to facilitate disease diagnosis, drug development, and pathological analysis at the molecular level. Qualitative and quantitative analysis and imaging of physiological processes at the molecular level can be achieved with advanced molecular imaging by employing imaging contrast agents in combination with traditional imaging modalities, such as optical imaging, ultrasound imaging, magnetic resonance imaging, single‐photon emission computed tomography, and positron emission tomography. With the aid of molecular imaging, absorption, distribution, metabolism, excretion, and other processes of drugs in various animals can be monitored quantitatively, and in vivo pharmacokinetics and pharmacodynamics can be simulated before clinical trials, which significantly shorten the period for drug development and reduce the number of animals participating in various tests. Here, the role of molecular imaging in drug target validation, drug screening, drug sensitivity analysis, pharmacokinetics research, drug efficacy evaluation, and other processes of chemical and biological drug research and development is summarized. Molecular imaging has become a powerful and effective tool in the research and development of various drugs for the treatment of a variety of diseases. Advanced molecular imaging can provide important support for disease and drug research, which will accelerate drug discovery and development.
Wang Y, Hu Y, Ye D. Activatable multimodal probes for in vivo imaging and theranostics. Angew Chem Int Ed. 2022;61(50):e202209512. https://doi.org/10.1002/anie.202209512
Bertolini M, Wong MS, Mendive‐Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti‐cancer immunotherapies. Chem Soc Rev. 2023;52(16):5352–72. https://doi.org/10.1039/D2CS00928E
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence‐guided surgery, endoscopy and tissue biopsy. Chem Soc Rev. 2022;51(2):566–93. https://doi.org/10.1039/D1CS00525A
Yuan X, Yu X, Dai B, Zhang Z. Advances in intravital imaging of liver immunity using optical microscopy and labeling methods. iRADIOLOGY. 2023;1(1):61–77. https://doi.org/10.1002/ird3.7
Cox B, Beard P. Super‐resolution ultrasound. Nature. 2015;527(7579):451–2. https://doi.org/10.1038/527451a
Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed. 2003;42(28):3218–35. https://doi.org/10.1002/anie.200200550
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem. 2023;15(6):755–63. https://doi.org/10.1038/s41557-023-01211-3
Li H, Meade TJ. Molecular magnetic resonance imaging with Gd(Ⅲ)‐based contrast agents: challenges and key advances. J Am Chem Soc. 2019;141(43):17025–41. https://doi.org/10.1021/jacs.9b09149
Ren J, Dong S. Advanced neuroimaging in the fetal brain: an update on technical advances and clinical findings. iRadiology. 2023;1(2):141–50. https://doi.org/10.1002/ird3.19
Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19(8):534–50. https://doi.org/10.1038/s41571-022-00652-y
Zhou Y, Lei P, Han J, Wang Z, Ji A, Wu Y, et al. Development of a novel 18F‐labeled probe for PET imaging of estrogen receptor β. J Med Chem. 2023;66(2):1210–1220. https://doi.org/10.1021/acs.jmedchem.2c00761
Cao R, Li R, Lai C, Shi H, Liu H, Cheng Z. Development of a novel HER2‐targeted peptide probe for dual‐modal imaging of tumors. J Med Chem. 2023;66(11):7523–33. https://doi.org/10.1021/acs.jmedchem.3c00347
Zheng L, Wang Z, Zhang X, Zhou Y, Ji A, Lou H, et al. Development of mitochondria‐targeted small‐molecule dyes for myocardial PET and fluorescence bimodal imaging. J Med Chem. 2022;65(1):497–506. https://doi.org/10.1021/acs.jmedchem.1c01660
Wu F, Chen H, Li Q, Liu R, Suo Y, Li B, et al. Amplifying oxidative stress utilizing multiband luminescence of lanthanide nanoparticles for eliciting systemic antitumor immunity. Chem Eng J. 2023;468:143827. https://doi.org/10.1016/j.cej.2023.143827
Chen H, Liu L, Qian K, Liu H, Wang Z, Gao F, et al. Bioinspired large Stokes shift small molecular dyes for biomedical fluorescence imaging. Sci Adv. 2022;8(32):eabo3289. https://www.science.org/doi/10.1126/sciadv.abo3289
Chang B, Li D, Ren Y, Qu C, Shi X, Liu R, et al. A phosphorescent probe for in vivo imaging in the second near‐infrared window. Nat Biomed Eng. 2022;6(5):629–39. https://doi.org/10.1038/s41551-021-00773-2
Wang S, Shi H, Wang L, Loredo A, Bachilo SM, Wu W, et al. Photostable small‐molecule NIR‐II fluorescent scaffolds that cross the blood−brain barrier for noninvasive brain imaging. J Am Chem Soc. 2022;144(51):23668–76. https://doi.org/10.1021/jacs.2c11223
Ji A, Lou H, Qu C, Lu W, Hao Y, Li J, et al. Acceptor engineering for NIR‐II dyes with high photochemical and biomedical performance. Nat Commun. 2022;13(1):3815. https://doi.org/10.1038/s41467-022-31521-y
Chen Y, Chen J, Chang B. Bioresponsive fluorescent probes active in the second near‐infrared window. iRADIOLOGY. 2023;1(1):36–60. https://doi.org/10.1002/ird3.10
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, et al. Chemical design of activatable photoacoustic probes for precise biomedical applications. Chem Rev. 2022;122(6):6850–918. https://doi.org/10.1021/acs.chemrev.1c00875
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent advances in contrast‐enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chem Rev. 2023;123(11):7379–419. https://doi.org/10.1021/acs.chemrev.2c00627
Li D, Zhang C, Tai X, Xu D, Xu J, Sun P, et al. 1064 nm Activatable semiconducting polymer‐based nanoplatform for NIR‐II fluorescence/NIR‐II photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma. Chem Eng J. 2022;445:136836. https://doi.org/10.1016/j.cej.2022.136836
Bellotti A. A review of high‐speed optical imaging technology for the analysis of ultrasound contrast agents in an acoustic field. iRadiology. 2023;1(1):78–90. https://doi.org/10.1002/ird3.8
Ferrara KW, Borden MA, Zhang H. Lipid‐shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res. 2009;42(7):881–92. https://doi.org/10.1021/ar8002442
Wahsner J, Gale EM, Rodríguez‐Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957–1057. https://doi.org/10.1021/acs.chemrev.8b00363
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, et al. Advances in PET imaging of cancer. Nat Rev Cancer. 2023;23(7):474–90. https://doi.org/10.1038/s41568-023-00576-4
Waaijer SJH, Kok IC, Eisses B, Schröder CP, Jalving M, Brouwers AH, et al. Molecular imaging in cancer drug development. J Nucl Med. 2018;59(5):726–32. https://doi.org/10.2967/jnumed.116.188045
Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607. https://doi.org/10.1038/nrd2290
Luo R, Liu H, Cheng Z. High‐throughput screening and biological display technology: applications in molecular imaging. iRADIOLOGY. 2023;1(1):18–35. https://doi.org/10.1002/ird3.11
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature. 2023;620(7975):737–45. https://doi.org/10.1038/s41586-023-06388-8
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77. https://doi.org/10.1038/s41573-019-0024-5
Kraus VB. Biomarkers as drug development tools: discovery, validation, qualification and use. Nat Rev Rheumatol. 2018;14(6):354–62. https://doi.org/10.1038/s41584-018-0005-9
Stokes JM, Gutierrez A, Lopatkin AJ, Andrews IW, French S, Matic I, et al. A multiplexable assay for screening antibiotic lethality against drug‐tolerant bacteria. Nat Methods. 2019;16(4):303–6. https://doi.org/10.1038/s41592-019-0333-y
Gerry CJ, Schreiber SL. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov. 2018;17(5):333–52. https://doi.org/10.1038/nrd.2018.53
Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2(2):123–31. https://doi.org/10.1038/nrd1007
Gorka AP, Nani RR, Schnermann MJ. Harnessing cyanine reactivity for optical imaging and drug delivery. Acc Chem Res. 2018;51(12):3226–35. https://doi.org/10.1021/acs.accounts.8b00384
Moreno MJ, Ling B, Stanimirovic DB. In vivo near‐infrared fluorescent optical imaging for CNS drug discovery. Expet Opin Drug Discov. 2020;15(8):903–15. https://doi.org/10.1080/17460441.2020.1759549
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965. https://doi.org/10.1152/physrev.00049.2010
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near‐infrared window. Adv Drug Deliv Rev. 2023;192:114637. https://doi.org/10.1016/j.addr.2022.114637
Ma Z, Li M. Engineered bioluminescent indicator enables the brain imaging of kinase inhibitors. ACS Cent Sci. 2023;9(4):597–9. https://doi.org/10.1021/acscentsci.3c00367
Zhang G, Ye HR, Sun Y, Guo ZZ. Ultrasound molecular imaging and its applications in cancer diagnosis and therapy. ACS Sens. 2022;7(10):2857–64. https://doi.org/10.1021/acssensors.2c01468
Sebastian JA, Strohm EM, Baranger J, Villemain O, Kolios MC, Simmons CA. Assessing engineered tissues and biomaterials using ultrasound imaging: in vitro and in vivo applications. Biomaterials. 2023;296:122054. https://doi.org/10.1016/j.biomaterials.2023.122054
Lu ZR, Laney V, Li Y. Targeted contrast agents for magnetic resonance molecular imaging of cancer. Acc Chem Res. 2022;55(19):2833–47. https://doi.org/10.1021/acs.accounts.2c00346
Verfaillie G, Franck C, De Crop A, Beels L, D’Asseler Y, Bacher K. A systematic review and meta‐analysis on the radiation dose of computed tomography in hybrid nuclear medicine imaging. EJNMMI Phys. 2023;10(1):32. https://doi.org/10.1186/s40658-023-00553-8
Dias AH, Jochumsen MR, Zacho HD, Munk OL, Gormsen LC. Multiparametric dynamic whole‐body PSMA PET/CT using [68Ga]Ga‐PSMA‐11 and [18F]PSMA‐1007. EJNMMI Res. 2023;13(1):31. https://doi.org/10.1186/s13550-023-00981-8
Peters SMB, Mink MCT, Privé BM, de Bakker M, de Lange F, Muselaers CHJ, et al. Optimization of the radiation dosimetry protocol in Lutetium‐177‐PSMA therapy: toward clinical implementation. EJNMMI Res. 2023;13(1):6. https://doi.org/10.1186/s13550-023-00952-z
Daoui O, Nour H, Abchir O, Elkhattabi S, Bakhouch M, Chtita S. A computer‐aided drug design approach to explore novel type Ⅱ inhibitors of c‐Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J Biomol Struct Dyn. 2023;41(16):7768–85. https://doi.org/10.1080/07391102.2022.2124456
Yang B, Zhang Y, Hei K, Xiao M, Chen R, Li Y. Analysis of the non‐specific binding proteins in the rna pull‐down experiment. Curr Proteonomics. 2021;18(2):224–30. https://doi.org/10.2174/1570164617666200319143539
Chen Z, Chen J, Chen L, Yoo CH, Rong J, Fu H, et al. Imaging leucine‐rich repeat kinase 2 in vivo with 18F‐labeled positron emission tomography ligand. J Med Chem. 2023;66(3):1712–24. https://doi.org/10.1021/acs.jmedchem.2c00551
Bell IM, Gallicchio SN, Stump CA, Bruno JG, Fan H, Gantert LT, et al. [11C]MK‐4232: the first positron emission tomography tracer for the calcitonin gene‐related peptide receptor. ACS Med Chem Lett. 2013;4(9):863–8. https://doi.org/10.1021/ml400199p
Lu J, Li C, Liu J, Wang J, Li Y, He B, et al. Impairments in endogenous AMPA receptor dynamics correlates with learning deficits in Alzheimer’s disease model mice. Proc Natl Acad Sci USA. 2023;120(40):e2303878120. https://doi.org/10.1073/pnas.2303878120
Wang W, Zhao J, Wen X, Lin CCJ, Li J, Huang Q, et al. MicroPET/CT imaging of AXL downregulation by HSP90 inhibition in triple‐negative breast cancer. Contrast Media Mol Imaging. 2017;2017:1686525. https://doi.org/10.1155/2017/1686525
Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, et al. A logical network‐based drug‐screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat Commun. 2021;12(1):280. https://doi.org/10.1038/s41467-020-20440-5
Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes‐Garfias CR, Zou J, et al. A nanoluciferase SARS‐CoV‐2 for rapid neutralization testing and screening of anti‐infective drugs for COVID‐19. Nat Commun. 2020;11(1):5214. https://doi.org/10.1038/s41467-020-19055-7
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism‐specific cancer therapies. Nat Rev Cancer. 2022;22(9):515–32. https://doi.org/10.1038/s41568-022-00490-1
Dai J, Liu Z, Wang L, Huang G, Song S, Chen C, et al. A telomerase‐activated magnetic resonance imaging probe for consecutively monitoring tumor growth kinetics and in situ screening inhibitors. J Am Chem Soc. 2023;145(2):1108–17. https://doi.org/10.1021/jacs.2c10749
Schuster B, Junkin M, Kashaf SS, Romero‐Calvo I, Kirby K, Matthews J, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun. 2020;11:5271. https://doi.org/10.1038/s41467-020-19058-4
Lago C, Gianesello M, Santomaso L, Leva G, Ballabio C, Anderle M, et al. Medulloblastoma and high‐grade glioma organoids for drug screening, lineage tracing, co‐culture and in vivo assay. Nat Protoc. 2023;18:2143–2180. https://doi.org/10.1038/s41596-023-00839-2
He L, Dar AC. Targeting drug‐resistant mutations in ALK. Nat Cancer. 2022;3(6):659–61. https://doi.org/10.1038/s43018-022-00390-1
Freedy AM, Liau BB. Discovering new biology with drug‐resistance alleles. Nat Chem Biol. 2021;17(12):1219–29. https://doi.org/10.1038/s41589-021-00865-9
Kurdziel KA, Kalen JD, Hirsch JI, Wilson JD, Agarwal R, Barrett D, et al. Imaging multidrug resistance with 4‐[18F]fluoropaclitaxel. Nucl Med Biol. 2007;34(7):823–31. https://doi.org/10.1016/j.nucmedbio.2007.04.011
Mitsuoka K, Kita A, Murakami Y, Shirasuna K, Noda A, Yamanaka K, et al. Predicting response to sepantronium bromide (YM155), a survivin suppressant, by PET imaging with [11C]YM155. Nucl Med Biol. 2018;64–65:41–6. https://doi.org/10.1016/j.nucmedbio.2018.06.005
Yi X, Song Y, Xu X, Peng D, Wang J, Qie X, et al. Development of a fast Raman‐assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples. Anal Chem. 2021;93(12):5098–106. https://doi.org/10.1021/acs.analchem.0c04709
Wang Y, Wang C, Huang M, Qin S, Zhao J, Sang S, et al. Pilot study of a novel nanobody 68Ga‐NODAGA‐SNA006 for instant PET imaging of CD8+ T cells. Eur J Nucl Med Mol Imag. 2022;49(13):4394–405. https://doi.org/10.1007/s00259-022-05903-9
Darrow JJ, Sharma M, Shroff M, Wagner AK. Efficacy and costs of spinal muscular atrophy drugs. Sci Transl Med. 2020;12(569):eaay9648. https://www.science.org/doi/10.1126/scitranslmed.aay9648
Adhyaru BB, Jacobson TA. Safety and efficacy of statin therapy. Nat Rev Cardiol. 2018;15(12):757–69. https://doi.org/10.1038/s41569-018-0098-5
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng. 2022;6(5):527–40. https://doi.org/10.1038/s41551-022-00891-5
Whitmarsh‐Everiss T, Laraia L. Small molecule probes for targeting autophagy. Nat Chem Biol. 2021;17(6):653–64. https://doi.org/10.1038/s41589-021-00768-9
Xie YL, de Jager VR, Chen RY, Dodd LE, Paripati P, Via LE, et al. Fourteen‐day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci Transl Med. 2021;13(579):eabd7618. https://www.science.org/doi/10.1126/scitranslmed.abd7618
Henneberg S, Hasenberg A, Maurer A, Neumann F, Bornemann L, Gonzalez–Menendez I, et al. Antibody‐guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun. 2021;12(1):1707. https://doi.org/10.1038/s41467-021-21965-z
Bensch F, van der Veen EL, de Lub‐Hooge MN, Jorritsma‐Smit A, Boellaard R, Kok IC, et al. 89Zr‐atezolizumab imaging as a non‐invasive approach to assess clinical response to PD‐L1 blockade in cancer. Nat Med. 2018;24(12):1852–8. https://doi.org/10.1038/s41591-018-0255-8
Rodnick ME, Sollert C, Stark D, Clark M, Katsifis A, Hockley BG, et al. Synthesis of 68Ga‐radiopharmaceuticals using both generator‐derived and cyclotron‐produced 68Ga as exemplified by [68Ga]Ga‐PSMA‐11 for prostate cancer PET imaging. Nat Protoc. 2022;17(4):980–1003. https://doi.org/10.1038/s41596-021-00662-7
Hinsenkamp I, Schulz S, Roscher M, Suhr AM, Meyer B, Munteanu B, et al. Inhibition of rho‐associated kinase 1/2 attenuates tumor growth in murine gastric cancer. Neoplasia. 2016;18(8):500–11. https://doi.org/10.1016/j.neo.2016.07.002
Wang Y, Ayres KL, Goldman DA, Dickler MN, Bardia A, Mayer IA, et al. 18F‐fluoroestradiol PET/CT measurement of estrogen receptor suppression during a phase Ⅰ trial of the novel estrogen receptor‐targeted therapeutic GDC‐0810: using an imaging biomarker to guide drug dosage in subsequent trials. Clin Cancer Res. 2017;23(12):3053–60. https://doi.org/10.1158/1078-0432.CCR-16-2197
Lin J, Gao D, Wang S, Lv G, Wang X, Lu C, et al. Stimuli‐responsive macrocyclization scaffold allows in situ self‐assembly of radioactive tracers for positron emission tomography imaging of enzyme activity. J Am Chem Soc. 2022;144(17):7667–75. https://doi.org/10.1021/jacs.1c12935
Wang Y, Bai H, Miao Y, Weng J, Huang Z, Fu J, et al. Tailoring a near‐infrared macrocyclization scaffold allows the control of in situ self‐assembly for photoacoustic/PET bimodal imaging. Angew Chem Int Ed. 2022;61(14):e202200369. https://doi.org/10.1002/anie.202200369
Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28(8):1630–9. https://doi.org/10.1038/s41591-022-01897-x
Harat M, Rakowska J, Harat M, Szylberg T, Furtak J, Miechowicz I, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun. 2023;14:4572. https://doi.org/10.1038/s41467-023-39731-8
Ayoub R, Ruddy RM, Cox E, Oyefiade A, Derkach D, Laughlin S, et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat Med. 2020;26(8):1285–94. https://doi.org/10.1038/s41591-020-0985-2
Delestre F, Venot Q, Bayard C, Fraissenon A, Ladraa S, Hoguin C, et al. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. Sci Transl Med. 2021;13(614):eabg0809. https://www.science.org/doi/10.1126/scitranslmed.abg0809
Zormpas‐Petridis K, Jerome NP, Blackledge MD, Carceller F, Poon E, Clarke M, et al. MRI imaging of the hemodynamic vasculature of neuroblastoma predicts response to antiangiogenic treatment. Cancer Res. 2019;79(11):2978–91. https://doi.org/10.1158/0008-5472.CAN-18-3412
Kazimierczyk R, Szumowski P, Nekolla SG, Malek LA, Blaszczak P, Hladunski M, et al. The impact of specific pulmonary arterial hypertension therapy on cardiac fluorodeoxyglucose distribution in PET/MRI hybrid imaging‐follow‐up study. EJNMMI Res. 2023;13(1):20. https://doi.org/10.1186/s13550-023-00971-w
Boeckxstaens L, Pauwels E, Vandecaveye V, Deckers W, Cleeren F, Dekervel J, et al. Prospective comparison of [18F]AlF‐NOTA‐octreotide PET/MRI to [68Ga]Ga‐DOTATATE PET/CT in neuroendocrine tumor patients. EJNMMI Res. 2023;13(1):53. https://doi.org/10.1186/s13550-023-01003-3
Ye D, Shuhendler AJ, Cui L, Tong L, Tee SS, Tikhomirov G, et al. Bioorthogonal cyclization‐mediated in situ self‐assembly of small‐molecule probes for imaging caspase activity in vivo. Nat Chem. 2014;6(6):519–26. https://doi.org/10.1038/nchem.1920
Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small‐molecule dye for NIR‐II imaging. Nat Mater. 2016;15(2):235–42. https://doi.org/10.1038/nmat4476
Mota F, Ruiz‐Bedoya CA, Tucker EW, Holt DP, De Jesus P, Lodge MA, et al. Dynamic 18F‐pretomanid PET imaging in animal models of TB meningitis and human studies. Nat Commun. 2022;13(1):7974. https://doi.org/10.1038/s41467-022-35730-3
Hendricks JA, Keliher EJ, Marinelli B, Reiner T, Weissleder R, Mazitschek R. In vivo PET imaging of histone deacetylases by 18F‐suberoylanilide hydroxamic acid (18F‐SAHA). J Med Chem. 2011;54(15):5576–82. https://doi.org/10.1021/jm200620f
Koike K, Bando K, Ando J, Yamakoshi H, Terayama N, Dodo K, et al. Quantitative drug dynamics visualized by alkyne‐tagged plasmonic‐enhanced Raman microscopy. ACS Nano. 2020;14(11):15032–41. https://doi.org/10.1021/acsnano.0c05010
Lindsay KE, Bhosle SM, Zurla C, Beyersdorf J, Rogers KA, Vanover D, et al. Visualization of early events in mRNA vaccine delivery in non‐human primates via PET–CT and near‐infrared imaging. Nat Biomed Eng. 2019;3(5):371–80. https://doi.org/10.1038/s41551-019-0378-3
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.