AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Dual‐modality imaging for identifying thrombosis via platelet GPⅡb/Ⅲa receptor targeted cyclic RGDfK microbubbles

Yabin Wang1Yang Zhang1Ning Yang2Xiaoting Zhang3Sai Ma4Mengqi Xu1Yunxue Xu3Shan Gao1Yan Fang1Na Li1Sulei Li1Ping Liang5Xu Zhang6Li Fan1,( )Feng Cao1,( )
Department of Cardiology & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center of Chinese PLA General Hospital, Beijing, China
Chinese PLA Medical College & Department of Cardiology, National Clinical Research Center for Geriatric Diseases, Beijing, China
Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
Department of Cardiology, Jinling Hospital, Nanjing, Jiangsu, China
Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China

Yabin Wang, Yang Zhang and Ning Yang are Contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Background

Acute thrombotic events play a major role in various cardiovascular diseases. Therefore, direct thrombus imaging can be proved beneficial for early diagnosis and prompt therapy of thrombosis. Our study investigated targeted dual‐modality cyclic arginine‐glycine‐aspartic micro bubbles (cRGD‐MBs) for direct imaging of thrombi by fluorescence and ultrasound.

Methods

cRGD‐MBs were prepared by mechanical vibration and chemical chelation methods.

Results

Coulter counter analysis demonstrated that the cRGD‐MBs were well dispersed, with diameters ranging from 1 to 3 μm. They emitted bright red fluorescence under an excitation wavelength of 660 nm. In vivo fluorescence and ultrasound imaging revealed that cRGD‐MBs accumulated at the site of thrombus in the carotid artery with significant fluorescence and ultrasonic signal.

Conclusions

This study showed that novel microbubble cRGD‐MBs were successfully synthesized, and that these could potentially be used as contrast agents for immediate diagnosis of acute thrombus in vivo.

References

[1]

Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–57. https://doi.org/10.1016/S0140-6736(06)68770-9

[2]

Furie B, Furie BC Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49. https://doi.org/10.1056/NEJMra0801082

[3]

Nighoghossian N, Derex L, Douek P The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke. 2005;36(12):2764–72. https://doi.org/10.1161/01.STR.0000190895.51934.43

[4]

Qiao R, Qiao H, Zhang Y, Wang Y, Chi C, Tian J, et al Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin‐specific upconversion nanoprobes. ACS Nano. 2017;11(2):1816–25. https://doi.org/10.1021/acsnano.6b07842

[5]

Wang Y, Zhang Y, Wang Z, Zhang J, Qiao RR, Xu M, et al Optical/MRI dual‐modality imaging of M1 macrophage polarization in atherosclerotic plaque with MARCO‐targeted upconversion luminescence probe. Biomaterials. 2019;219:119378. https://doi.org/10.1016/j.biomaterials.2019.119378

[6]

Schutt EG, Klein DH, Mattrey RM, Riess JG Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl. 2003;42(28):3218–35. https://doi.org/10.1002/anie.200200550

[7]

Sanz J, Fayad ZA Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–7. https://doi.org/10.1038/nature06803

[8]

Vyas SP, Vaidya B Targeted delivery of thrombolytic agents: role of integrin receptors. Expet Opin Drug Deliv. 2009;6(5):499–508. https://doi.org/10.1517/17425240902878002

[9]

Bennett JS Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest. 2005;115(12):3363–9. https://doi.org/10.1172/JCI26989

[10]

Ma YQ, Qin J, Plow EF Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemostasis. 2007;5(7):1345–52. https://doi.org/10.1111/j.1538-7836.2007.02537

[11]

Kerrigan GN, Buchanan MR, Cade JF, Regoeczi E, Hirsh J Investigation of the mechanism of false positive 125I‐labelled fibrinogen scans. Br J Haematol. 1974;26(3):469–73. https://doi.org/10.1111/j.1365-2141.1974.tb00488

[12]

Springer TA, Wang JH The three‐dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem. 2004;68:29–63. https://doi.org/10.1016/S0065-3233(04)68002-8

[13]

Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke‐Marchant K, Marchant RE, et al Affinity manipulation of surface‐conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials. 2008;29(11):1676–85. https://doi.org/10.1016/j.biomaterials.2007.12.015

[14]

Kononova O, Litvinov RI, Blokhin DS, Klochkov VV, Weisel JW, Bennett JS, et al Mechanistic basis for the binding of RGD‐ and AGDV‐peptides to the platelet integrin αIIbβ3. Biochemistry. 2017;56(13):1932–42. https://doi.org/10.1021/acs.biochem.6b01113

[15]

Luo BH, Carman CV, Springer TA Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25(1):619–47. https://doi.org/10.1146/annurev.immunol.25.022106.141618

[16]

Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, et al A single‐chain antibody‐CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J. 2018;39(2):111–6. https://doi.org/10.1093/eurheartj/ehx218

[17]

Bonnard T, Tennant Z, Niego B, Kanojia R, Alt K, Jagdale S, et al Novel thrombolytic drug based on thrombin cleavable microplasminogen coupled to a single‐chain antibody specific for activated GPⅡb/Ⅲa. J Am Heart Assoc. 2017;6(2). https://doi.org/10.1161/JAHA.116.004535

[18]

Srinivasan R, Marchant RE, Gupta AS In vitro and in vivo platelet targeting by cyclic RGD‐modified liposomes. J Biomed Mater Res. 2010;93(3):1004–15. https://doi.org/10.1002/jbm.a.32549

[19]

Ntziachristos V, Bremer C, Weissleder R Fluorescence imaging with near‐infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13(1):195–208. https://doi.org/10.1007/s00330-002-1524-x

[20]

Frangioni JV In vivo near‐infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7(5):626–34. https://doi.org/10.1016/j.cbpa.2003.08.007

[21]

Jin B, Lin M, Zong Y, Wan M, Xu F, Duan Z, et al. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging. Nanotechnology. 2015;26(34):345601. https://doi.org/10.1088/0957-4484/26/34/345601

[22]

Wang X, Hagemeyer CE, Hohmann JD, Leitner E, Armstrong PC, Jia F, et al Novel single‐chain antibody‐targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation. 2012;125(25):3117–26. https://doi.org/10.1161/CIRCULATIONAHA.111.030312

[23]

Wang X, Gkanatsas Y, Palasubramaniam J, Hohmann JD, Chen YC, Lim B, et al Thrombus‐targeted theranostic microbubbles: a new Technology towards concurrent rapid ultrasound diagnosis and bleeding‐free fibrinolytic treatment of thrombosis. Theranostics. 2016;6(5):726–38. https://doi.org/10.7150/thno.14514.eCollection2016

[24]

Maier A, Plaza‐Heck P, Meixner F, Guenther F, Kaufmann BA, Kramer M, et al A molecular intravascular ultrasound contrast agent allows detection of activated platelets on the surface of symptomatic human plaques. Atherosclerosis. 2017;267:68–77. https://doi.org/10.1016/j.atherosclerosis.2017.10.029

[25]

Jin Y, Ma X, Feng S, Liang X, Dai Z, Tian J, et al Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics. Bioconjugate Chem. 2015;26(12):2530–41. https://doi.org/10.1021/acs.bioconjchem.5b00551

[26]

Jin Y, Yang X, Tian J Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma. Nanoscale. 2018;10(20):9594–601. https://doi.org/10.1039/c8nr02036a

[27]

Jin Y, Ma X, Zhang S, Meng H, Xu M, Yang X, et al A tantalum oxide‐based core/shell nanoparticle for triple‐modality image‐guided chemo‐thermal synergetic therapy of esophageal carcinoma. Cancer Lett. 2017;397:61–71. https://doi.org/10.1016/j.canlet.2017.03.030

[28]

Li S, Gou T, Wang Q, Chen M, Chen Z, Xu M, et al Ultrasound/optical dual‐modality imaging for evaluation of vulnerable atherosclerotic plaques with osteopontin targeted nanoparticles. Macromol Biosci. 2020;20(2):e1900279. https://doi.org/10.1002/mabi.201900279

[29]

Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near‐infrared fluorescent proteins and their applications. Biochemistry (Mosc). 2019;84((Suppl 1)):S32–50. https://doi.org/10.1134/S0006297919140037

[30]

Hong G, Antaris A, Dai H Near‐infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010. https://doi.org/10.1038/s41551-016-0010

[31]

Stride E, Saffari N Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H. 2003;217(6):429–47. https://doi.org/10.1243/09544110360729072

[32]

Qu E, Dai Z, Liang X, Qian Y, Wang S, Ke H, et al Detection and pathologic evaluation of sentinel lymph nodes in the VX2 tumor model using a novel ultrasound/near‐infrared dual‐modality contrast agent. Ultrasound Med Biol. 2015;41(7):1905–12. https://doi.org/10.1016/j.ultrasmedbio.2015.03.005

[33]

Pillai R, Marinelli ER, Fan H, Nanjappan P, Song B, von Wronski MA, et al A phospholipid‐PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)‐targeting heterodimer peptide for contrast‐enhanced ultrasound imaging of angiogenesis. Bioconjugate Chem. 2010;21(3):556–62. https://doi.org/10.1021/bc9005688

[34]

Hu G, Liu C, Liao Y, Yang L, Huang R, Wu J, et al Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb Haemostasis. 2012;107(1):172–83. https://doi.org/10.1160/TH10-11-0701

[35]

Wu W, Wang Y, Shen S, Wu J, Guo S, Su L, et al In vivo ultrasound molecular imaging of inflammatory thrombosis in arteries with cyclic Arg‐Gly‐Asp‐modified microbubbles targeted to glycoprotein IIb/Ⅲa. Invest Radiol. 2013;48(11):803–12. https://doi.org/10.1097/RLI.0b013e318298652d

[36]

Tartis MS, Kruse DE, Zheng H, Zhang H, Kheirolomoom A, Marik J, et al Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Contr Release. 2008;131(3):160–6. https://doi.org/10.1016/j.jconrel.2008.07.030

[37]

Sachs UJ, Nieswandt B In vivo thrombus formation in murine models. Circ Res. 2007;100(7):979–91. https://doi.org/10.1161/01.RES.0000261936.85776.5f

[38]

Farrehi PM, Ozaki CK, Carmeliet P, Fay WP Regulation of arterial thrombolysis by plasminogen activator inhibitor‐1 in mice. Circulation. 1998;97(10):1002–8. https://doi.org/10.1161/01.cir.97.10.1002

iRADIOLOGY
Pages 227-239
Cite this article:
Wang Y, Zhang Y, Yang N, et al. Dual‐modality imaging for identifying thrombosis via platelet GPⅡb/Ⅲa receptor targeted cyclic RGDfK microbubbles. iRADIOLOGY, 2024, 2(3): 227-239. https://doi.org/10.1002/ird3.58

70

Views

2

Downloads

0

Crossref

Altmetrics

Received: 13 November 2023
Revised: 04 January 2024
Accepted: 07 January 2024
Published: 16 February 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return