AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Application of radiogenomics in head and neck cancer: A new tool toward diagnosis and therapy

Yen Hui Ong1,2,3Weihui Zheng4,5Pek Lan Khong1,2Qianqian Ni1,2,3 ( )
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
Show Author Information

Graphical Abstract

Abstract

Head and neck cancer is a significant threat to human health and is characterized by high 5‐year morbidity and mortality rates. Addressing this challenge requires the application of precision medicine, but the inherent heterogeneity of head and neck cancer complicates its treatment. Radiogenomics, an interdisciplinary field at the intersection of genomics and radiology, may represent a solution. Radiogenomics offers the potential to revolutionize the diagnosis and treatment of this complex and diverse disease. By comprehensively analyzing the genetic information and radiological features of tumors, clinicians can gain a profound understanding of patients' conditions. Gaining such in‐depth insight facilitates early detection and implementation of personalized treatment strategies, both of which are integral components of precision medicine. Tailored treatments, including surgical interventions and targeted therapies, provide improved outcomes and reduced side effects. Radiogenomics represents a groundbreaking advancement that has the potential to significantly enhance the quality of care and outcomes of patients with head and neck cancer. To shed light on this transformative approach, we performed a comprehensive overview of radiomics and radiogenomics‐based diagnostic methods tailored to the unique characteristics of head and neck cancer.

References

[1]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Gobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492

[2]

Thariat J, Vignot S, Lapierre A, Falk AT, Guigay J, Obberghen‐Schilling EV, et al. Integrating genomics in head and neck cancer treatment: promises and pitfalls. Crit Rev Oncol‐Hematol. 2015;95(3):397–406. https://doi.org/10.1016/j.critrevonc.2015.03.005

[3]

Canning M, Guo G, Yu M, Myint C, Groves MW, Byrd JK, et al. Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol. 2019;7(52):1–19. https://doi.org/10.3389/fcell.2019.00052

[4]

Yu J, Gao B. Molecular imaging for cancer immunotherapy. iRadiology. 2023;1(1):3–17. https://doi.org/10.1002/ird3.12

[5]

Bruixola G, Remacha E, Jimenez‐Pastor A, Dualde D, Viala A, Monton JV, et al. Radiomics and radiogenomics in head and neck squamous cell carcinoma: potential contribution to patient management and challenges. Cancer Treat Rev. 2021;99:102263. https://doi.org/10.1016/j.ctrv.2021.102263

[6]

Salzillo TC, Taku N, Wahid KA, McDonald BA, Wang J, van Dijk LV, et al. Advances in imaging for HPV‐related oropharyngeal cancer: applications to radiation oncology. Semin Radiat Oncol. 2021;31(4):371–88. https://doi.org/10.1016/j.semradonc.2021.05.001

[7]

Wong AJ, Kanwar A, Mohamed AS, Fuller CD. Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res. 2016;5(4):371–82. https://doi.org/10.21037/tcr.2016.07.18

[8]
Ziegler SI. Positron emission tomography: principles, technology, and recent developments. In: Jonson B, Meister M, Nyman G, Zhukov M, editors, Nuclear physics A; 2005. p. 679–687, 752. https://doi.org/10.1016/j.nuclphysa.2005.02.067
[9]

Jung H. Basic physical principles and clinical applications of computed tomography. Prog Med Phys. 2021;32(1):1–17. https://doi.org/10.14316/pmp.2021.32.1.1

[10]

Fernandez‐Lazaro D, García Hernandez JL, Garcia AC, Cordova Martínez A, Mielgo‐Ayuso J, Cruz‐Hernandez JJ. Liquid biopsy as novel tool in precision medicine: origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics. 2020;10(4):215–31. https://doi.org/10.3390/diagnostics10040215

[11]

Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The era of radiogenomics in precision medicine: an emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Front Oncol. 2021;10:570465. https://doi.org/10.3389/fonc.2020.570465

[12]

Dang M, Lysack JT, Wu T, Matthews TW, Chandarana SP, Brockton NT, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. Am J Neuroradiol. 2015;36(1):166–70. https://doi.org/10.3174/ajnr.A4110

[13]

Fruehwald‐Pallamar J, Hesselink J, Mafee M, Holzer‐Fruehwald L, Czerny C, Mayerhoefer M. Texture‐based analysis of 100 MR examinations of head and neck tumors – is it possible to discriminate between benigh and malignant masses in a multicenter trial? RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren. 2016;188(2):195–202. https://doi.org/10.1055/s-0041-106066

[14]

Yuan Y, Ren J, Shi Y, Tao X. MRI‐based radiomic signature as predictive marker for patients with head and neck squamous cell carcinoma. Eur J Radiol. 2019;117:193–8. https://doi.org/10.1016/j.ejrad.2019.06.019

[15]

Rijpkema M, Kaanders JHAM, Joosten FBM, van der Kogel AJ, Heerschap A. Effects of breathing a heperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head‐and‐neck tumors as measured by magnetic resonance imaging. Clin Inv Head Neck. Int J Radiat Oncol Biol Phys. 2002;53(5):1185–91. https://doi.org/10.1016/S0360-3016(02)02825-0

[16]

Thoeny HC, De Keyzer F, King AD. Diffusion‐weighted MR imaging in the head and neck. Radiol. 2012;263(1):19–32. https://doi.org/10.1148/radiol.11101821

[17]

Alamolhoda F, Faeghi F, Bakhshandeh M, Ahmadi A, Taheri MS, Abbasi S. Diagnostic value of diffusion weighted magnetic resonance imaging in evaluation of metastatic neck lymph nodes in head and neck cancer: a sample of Iranian patient. Asian Pac J Cancer Prev APJCP. 2019;20(6):1789–95. https://doi.org/10.31557/APJCP.2019.20.6.1789

[18]

Beltagi AHE, Elsotouhy AH, Own AM, Abdelfattah W, Nair K, Vattoth S. Functional magnetic resonance imaging of head and neck cancer: performance and potential. NeuroRadiol J. 2019;32(1):36–52. https://doi.org/10.1177/1971400918808546

[19]

Fujima N, Yoshida D, Sakashita T, Homma A, Tsukahara A, Tha KK, et al. Intravoxel incoherent motion diffusion‐weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion‐related parameters compared to dynamic contrast‐enhanced MRI. Magn Reson Imag. 2014;32(10):1206–13. https://doi.org/10.1016/j.mri.2014.08.009

[20]

Fujima N, Kudo K, Tsukahara A, Yoshida D, Sakashita T, Homma A, et al. Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo‐continuous arterial spin labeling: comparison with dynamic contrast‐enhanced MRI. J Magn Reson Imag. 2015;41(4):983–91. https://doi.org/10.1002/jmri.24637

[21]

Ishiyama M, Richards T, Parvathaneni U, Anzai Y. Dynamic contrast‐enhanced magnetic resonance imaging in head and neck cancer: differentiation of new H&N cancer, recurrent disease, and benign post‐treatment changes. Clin Imag. 2015;39(4):566–70. https://doi.org/10.1016/j.clinimag.2015.01.016

[22]

Jansen JF, Lu Y, Gupta G, Lee NY, Stambuk HE, Mazaheri Y, et al. Texture analysis on parametric maps derived from dynamic contrast‐enhanced magnetic resonance imaging in head and neck cancer. World J Radiol. 2016;8(1):90–7. https://doi.org/10.4329/wjr.v8.i1.90

[23]

Park M, Kim J, Choi YS, Lee S, Koh YW, Kim S, et al. Application of dynamic contrast‐enhanced MRI parameters for differentiating squamous cell carcinoma and malignant lymphoma of the oropharynx. Am J Roentgenol. 2016;206(2):401–7. https://doi.org/10.2214/AJR.15.14550

[24]

Den RB, Doemer A, Kubicek G, Bednarz G, Galvin JM, Keane WM, et al. Daily image guidance with cone‐beam computed tomography for head‐and‐neck cancer intensity‐modulated radiotherapy: a prospective study. Int J Radiat Oncol Biol Phys. 2010;76(5):1353–9. https://doi.org/10.1016/j.ijrobp.2009.03.059

[25]

Buch K, Fujita A, Li B, Kawashima Y, Qureshi MM, Sakai O. Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinoma on CT. Am J Neuroradiol. 2015;36(7):1343–8. https://doi.org/10.3174/ajnr.A4285

[26]

Fujita A, Buch K, Truong MT, Qureshi MM, Mercier G, Jalisi S, et al. Imaging characteristics of metastatic nodes and outcomes by HPV status in head and neck cancers. Laryngoscope. 2016;126(2):392–8. https://doi.org/10.1002/lary.25587

[27]

Swartz JE, Pothen AJ, Wegner I, Smid EJ, Swart KMA, de Bree R, et al. Feasibility of using head and neck CT imaging to assess skeletal muscle mass in head and neck cancer patients. Oral Oncol. 2016;62:28–33. https://doi.org/10.1016/j.oraloncology.2016.09.006

[28]

Albrecht MH, Scholtz JE, Kraft J, Bauer RW, Kauo M, Dewes P, et al. Assessment of an advanced monoenergetic reconstruction technique in dual‐energy computed tomography of head and neck cancer. Eur Radiol. 2015;25(8):2493–501. https://doi.org/10.1007/s00330-015-3627-1

[29]

Stokkel MP, Moons KG, ten Broek FW, van Rijk PP, Hordijk GJ. 18F‐fluorodeoxyglucose dual‐head positron emission tomography as a procedure for detecting simultaneous primary tumors in cases of head and neck cancer. Cancer. 2000;86(11):2370–2377. PMID: 10590380. https://doi.org/10.1002/(sici)1097-0142(19991201)86:11<2370::aid-cncr27>3.3.co;2-2

[30]

Teknos TN, Rosenthal EL, Lee D, Taylor R, Marn CS. Positron emission tomography in the evaluation of stage Ⅲ and Ⅳ head and neck cancer. Head Neck. 2001;23(12):1056–60. https://doi.org/10.1002/hed.10006

[31]

Ryan WR, Willard EF, Le QT, Pinto HA. Positron‐emission tomography for surveillance of head and neck cancer. Laryngoscope. 2005;115(4):645–50. https://doi.org/10.1097/01.mlg.0000161345.23128.d4

[32]

Vallieres M, Kumar A, Sultanem K, El Naqa I. FDG‐PET image‐derived features can determine HPV status in head‐and‐neck cancer. Int J Radiat Oncol Biol Phys. 2013;87(2):467. https://doi.org/10.1016/j.ijrobp.2013.06.1236

[33]

Greven KM, Williams DW, McGuirt F, Harkness BA, D’Agostino RB, Keyes JW, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck. 2001;23(11):942–6. https://doi.org/10.1002/hed.1136

[34]

Hannah A, Scott AM, Tochon‐Danguy H, Chan JG, Akhurst T, Berlangieri S, et al. Evaluation of 18 F‐fluorodeoxyglucose positron emission tomography and computed tomography with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg. 2002;236(2):208–17. https://doi.org/10.1097/00000658-200208000-00009

[35]

Krabbe CA, Balink H, Roodenburg JL, Dol J, de Visscher JG. Performance of 18F‐FDG PET/contrast‐enhanced CT in the staging of squamous cell carcinoma of the oral cavity and oropharynx. Int J Oral Maxillofac Surg. 2011;40(11):1263–70. https://doi.org/10.1016/j.ijom.2011.06.023

[36]

King KG, Kositwattanarerk A, Genden E, Kao J, Som PM, Kostakoglu L. Cancers of the oral cavity and oropharynx: FDG PET with contrast‐enhanced CT in the posttreatment setting. Radiographics. 2011;31(2):355–73. https://doi.org/10.1148/rg.312095765

[37]
Buller M, Hung R. Physiologic 18F‐FDG activity in head and neck imaging: scope and effect on image interpretation. J Nucl Med. 2016;57(2):622. Available from https://jnm.snmjournals.org/content/57/supplement_2/622
[38]

Albertson MA, Chandra S, Sayed Z, Johnson C. PET/CT evaluation of head and neck cancer of unknown primary. Semin Ultrasound CT MRI. 2019;40(5):414–23. https://doi.org/10.1053/j.sult.2019.07.005

[39]

Rosen BS, Wilkie JR, Sun Y, Ibrahim M, Casper KA, Miller JE, et al. CT and FDG‐PET radiologic biomarkers in p16+ oropharyngeal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Radiother Oncol. 2021;155:174–81. https://doi.org/10.1016/j.radonc.2020.10.006

[40]

Bogowicz M, Matea P, Riesterer O, Finazzi T, Schuler HG, Holz‐Sapra E, et al. Targeting treatment resistance in head and neck squamous cell carcinoma – proof of concept for CT radiomics‐based identification of resistant sub‐volumes. Front Oncol. 2021;11:664304. https://doi.org/10.3389/fonc.2021.664304

[41]

Olin A, Krogager L, Rasmussen JH, Andersen FL, Specht L, Beyer T, et al. Preparing data for multiparametric PET/MR imaging: influence of PET point spread function modelling and EPI distortion correction on the spatial correlation of [18F]FDG‐PET and diffusion‐weighted MRI in head and neck cancer. Phys Med. 2019;61:1–7. https://doi.org/10.1016/j.ejmp.2019.04.006

[42]

Huang C, Song T, Mukherji SK, Zhang L, Lu J, Chen X, et al. Comparative study between integrated positron emission tomography/magnetic resonance and positron emission tomography/computed tomography in the T and N staging of hypopharyngeal cancer: an initial result. J Comput Assist Tomogr. 2020;44(4):540–5. https://doi.org/10.1097/RCT.0000000000001036

[43]

Escott EJ. Role of positron emission tomography/computed tomography (PET/CT) in head and neck cancer. Radiol Clin. 2013;51(5):881–93. https://doi.org/10.1016/j.rcl.2013.05.002

[44]

Marcel S, ten Broek FW, Hordijk GJ, Koole R, van Rijk PP. Preoperative evaluation of patients with primary head and neck cancer using dual‐head 18fluorodeoxyglucose positron emission tomography. Ann Surg. 2000;231(2):229–34. https://doi.org/10.1097/00000658-200002000-00012

[45]

Hammerman PS, Hayes DN, Grandis JR. Therapeutic insights from genomic studies of head and neck squamous cell carcinomas. Cancer Discov. 2015;5(3):239–44. https://doi.org/10.1158/2159-8290.CD-14-1205

[46]

Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV‐positive and HPV‐negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41. https://doi.org/10.1158/1078-0432.CCR-13-3310

[47]

Kang H, Kiess A, Chung C. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26. https://doi.org/10.1038/nrclinonc.2014.192

[48]

Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(2):228–40. https://doi.org/10.1016/j.semcancer.2018.01.008

[49]

Chatfield‐Reed K, Gui S, O’Neill WQ, Teknos TN, Pan Q. HPV33+ HNSCC is associated with poor prognosis and has unique genomic and immunological landscapes. Oral Oncol. 2020;100:104488. https://doi.org/10.1016/j.oraloncology.2019.104488

[50]

Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9. https://doi.org/10.1016/j.cell.2009.08.017

[51]

Moussa AM, Ziv E. Radiogenomics in interventional oncology. Curr Oncol Rep. 2021;23(9):1–9. https://doi.org/10.1007/s11912-020-00994-9

[52]

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(1):4006–14. https://doi.org/10.1038/ncomms5006

[53]

Kittel J, Funchain P, Chute D, Woody NM, Hammerman P, Koyfman S, et al. Comprehensive functional genomic profiling of HPV unassociated head and neck squamous cell cancer identifies neomorphic mutations that confer resistance to therapy. Int J Radiat Oncol Biol Phys. 2015;93(3):E538. https://doi.org/10.1016/j.ijrobp.2015.07.1925

[54]

Borchiellini D, Etienne‐Grimaldi MC, Bensadoun RJ, Benezery K, Dassonville O, Poissonnet G, et al. Candidate apoptotic and DNA repair gene approach confirms involvent of ERCC1, ERCC5, TP53 and MDM2 in radiation‐induced toxicity in head and neck cancer. Oral Oncol. 2017;67:70–6. https://doi.org/10.1016/j.oraloncology.2017.02.003

[55]

Zwirner K, Hilke FJ, Demidov G, Socarras Fernandez J, Ossowski S, Gani C, et al. Radiogenomics in head and neck cancer: correlation of radiomic heterogeneity and somatic mutations in TP53, FAT1 and KMT2D. Strahlenther Onkol. 2019;195(9):771–9. https://doi.org/10.1007/s00066-019-01478-x

[56]

Meneghetti AR, Zwanenburg A, Linge A, Lohaus F, Grosser M, Baretton GB, et al. Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC. Sci Rep. 2022;12(1):16755. https://doi.org/10.1038/s41598-022-21159-7

[57]

Spielvogel CP, Stolber S, Papp L, Krajnc D, Grahovac M, Gurnhofer E, et al. Radiogenomics markers enable risk stratification and inference of mutational pathway states in head and neck cancer. Eur J Nucl Med Mol Imag. 2023;50(2):46–58. https://doi.org/10.1007/s00259-022-05973-9

[58]

Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour‐infiltrating CD8 cells and response to anti‐PD‐1 or anti‐PD‐L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91. https://doi.org/10.1016/S1470-2045(18)30413-3

[59]

Zhu Y, Mohamed ASR, Lai SY, Yang S, Kanwar A, Wei L, et al. Imaging‐genomic study of head and neck squamous cell carcinoma: associations between radiomic phenotypes and genomic mechanisms via integration of the cancer genome atlas and the cancer imaging archive. JCO Clinical Cancer Informatics. 2019;3(3):1–9. https://doi.org/10.1200/CCI.18.00073

[60]

Nicolay NH, Wiedenmann N, Mix M, Weber WA, Werner M, Grosu AL, et al. Correlative analyses between tissue‐based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy‐results from a prospective trial. Eur J Nucl Med Mol Imag. 2020;47(5):1046–55. https://doi.org/10.1007/s00259-019-04598-9

[61]

Xie C, Hu Y, Ho JW, Han L, Yang H, Wen J, et al. Using genomics feature selection method in radiomics pipeline improves prognostication performance in locally advanced esophageal squamous cell carcinoma‐A pilot study. Cancers. 2021;13(9):156–60. https://doi.org/10.3390/cancers13092145

[62]

Gao Y, Mao Y, Lu S, Tan L, Li G, Chen J, et al. Magnetic resonance imaging‐based radiogenomics analysis for predicting prognosis and gene expression profile in advanced nasopharyngeal carcinoma. Head Neck. 2021;43(12):3730–42. https://doi.org/10.1002/hed.26867

[63]

Tian R, Li Y, Jia C, Mou Y, Zhang H, Wu X, et al. Radiomics model for predicting TP53 status using CT and machine learning approach in laryngeal squamous cell carcinoma. Front Oncol. 2022;12:823428. https://doi.org/10.3389/fonc.2022.823428

[64]

Wang F, Zhang W, Chai Y, Wang H, Liu Z, He Y. Constrast‐enhanced computed tomography radiomics predicts CD27 expression and clinical prognosis in head and neck squamous cell carcinoma. Front Immunol. 2022;13:1015436. https://doi.org/10.3389/fimmu.2022.1015436

[65]

Qin K, Cheng Y, Li L, Liu C, Yang F, Rao J, et al. Radiomics‐based model for prediction of TGF‐β1 expression in head and neck squamous cell carcinoma. Research Square. 2023. https://doi.org/10.21203/rs.3.rs-2920092/v1

[66]

Hang R, Bai G, Sun B, Xu P, Sun X, Yan G, et al. Construction of an enhanced computed tomography radiomics model for non‐invasively predicting granzyme A in head and neck squamous cell carcinoma by machine learning. Eur Arch Oto‐Rhino‐Laryngol. 2023;280(7):3353–64. https://doi.org/10.1007/s00405-023-07909-x

[67]

Chen L, Zhou Z, Sher D, Zhang Q, Shah J, Pham N, et al. Combining many‐objective radiomics and 3‐dimensional convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Conf Proc IEEE Eng Med Biol Soc. 2019;64(7):1–27. https://doi.org/10.1109/EMBC.2018.8513070

[68]

Wu L, Lin P, Zhao Y, Li X, Yang H, He Y. Prediction of genetic alterations in oncogenic signaling pathways in squamous cell carcinoma of the head and neck: radiogenomics analysis based on computed tomography images. J Comput Assist Tomogr. 2021;45(6):932–40. https://doi.org/10.1097/RCT.0000000000001213

[69]

Tixier F, Cheze‐le‐rest C, Schick U, Simon B, Dufour X, Key S, et al. Transcriptomics in cancer revealed by positron emission tomography radiomics. Sci Rep. 2020;10(1):1–11. https://doi.org/10.1038/s41598-020-62414-z

[70]

Clasen K, Leibfarth S, Hilke FJ, Admard J, Winter RM, Welz S, et al. PET/MRI and genetic intrapatient heterogeneity in head and neck cancers. Strahlenther Onkol. 2020;196(6):542–51. https://doi.org/10.1007/s00066-020-01606-y

[71]

Katsoulakis E, Yu Y, Apte AP, Leeman JE, Katabi N, Morris L, et al. Radiomic analysis identifies tumor subtypes associated with distinct molecular and microenvironmental factors in head and neck squamous cell carcinoma. Oral Oncol. 2020;110:104877. https://doi.org/10.1016/j.oraloncology.2020.104877

[72]

Oh J, Veeraraghavan H, Katsoulakis E, Apte A, Zhu J, Yu Y, et al. A radiogenomics study using a network‐based unbalanced optimal mass transport method in head and neck squamous cell carcinoma. 64th Annu Meet Exhib Am Assoc Phys Med. 2022;49(6):E192. https://doi.org/10.1002/mp.15769

[73]

Borgmann K, Roper B, El‐Awady RA, Brackrock S, Bigalke M, Dork T, et al. Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol. 2002;64(2):141–52. https://doi.org/10.1016/S0167-8140(02)00167-6

[74]

Werbrouck J, Ruyck KD, Duprez F, Veldeman L, Claes K, Eijkeren MV, et al. Acute normal tissue reactions in head‐and‐neck cancer patients treated with IMRT: influence of dose and association with genetic polymorphisms in DNA DSB repair genes. Int J Radiat Oncol Biol Phys. 2009;73(4):1187–95. https://doi.org/10.1016/j.ijrobp.2008.08.073

[75]

Pratesi N, Mangoni M, Mancini I, Paiar F, Simi L, Livi L, et al. Association between single nucleotide polymorphisms in the XRCC1 and RAD51 genes and clinical radiosensitivity in head and neck cancer. Radiother Oncol. 2011;99(3):356–61. https://doi.org/10.1016/j.radonc.2011.05.062

[76]

Wong AJ, Kanwar A, Mohamed AS, Fuller CD. Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res. 2016;5(4):371–82. https://doi.org/10.21037/tcr.2016.07.18

[77]

Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593–6. https://doi.org/10.1021/nl8029114

[78]

Alessandrino F, Shinagare AB, Bosse D, Choueiri TK, Krajewski KM. Radiogenomics in renal cell carcinoma. Abdom Radiol. 2018;44(6):1990–8. https://doi.org/10.1007/s00261-018-1624-y

[79]

Qian X, Tan H, Zhang J, Liu K, Yang T, Wang M, et al. Identification of biomarkers for pseudo and true progression of GBM based on radiogenomics study. Oncotarget. 2016;7(34):55377–94. https://doi.org/10.18632/oncotarget.10553

[80]

Incoronato M, Grimaldi AM, Mirabelli P, Cavaliere C, Parente CA, Franzese M, et al. Circulating miRNAs in untreated breast cancer: an exploratory multimodality morpho‐functional study. Cancers. 2019;11(6):1–22. https://doi.org/10.3390/cancers11060876

[81]

Creasy JM, Cunanan KM, Chakraborty J, McAuliffe JC, Chou J, Gonen M, et al. Differences in liver parenchyma are measurable with CT radiomics at initial colon resection in patients that develop hepatic metastases from stage Ⅱ/Ⅲ colon cancer. Ann Surg Oncol. 2021;28(4):1982–9. https://doi.org/10.1245/s10434-020-09134-w

iRADIOLOGY
Pages 113-127
Cite this article:
Ong YH, Zheng W, Khong PL, et al. Application of radiogenomics in head and neck cancer: A new tool toward diagnosis and therapy. iRADIOLOGY, 2024, 2(2): 113-127. https://doi.org/10.1002/ird3.61

241

Views

35

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 30 October 2023
Revised: 29 December 2023
Accepted: 19 January 2024
Published: 23 February 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return