AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (1,018.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Current progress and future perspectives in total‐body positron emission tomography/computed tomography. Part Ⅱ: Clinical applications

Ruohua Chen1,Tao Sun2,Gang Huang1Yun Zhou3( )Jianjun Liu1 ( )
Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China

Ruohua Chen and Tao Sun contributed equally to this article.

Show Author Information

Graphical Abstract

Abstract

Total‐body positron emission tomography (TB‐PET) has significantly advanced from initial conception to global commercial availability. The high sensitivity of TB‐PET has led to superior lesion detection, thereby expanding the range of clinical applications. TB‐PET technology offers several advantages: (a) It enables the detection of small lesions, facilitating precise cancer staging and targeted cancer formulation. (b) The technology shortens the acquisition time while maintaining the quality of diagnostic images. (c) TB‐PET allows for a reduction in the amount of administered radiotracer, which minimizes image noise, reduces the effective radiation dose to patients, and enhances staff safety. (d) The scanner supports the development of new tracers and the dynamic imaging of these tracers throughout the entire body. (e) TB‐PET accommodates delayed scanning, which has been shown to improve the detection of small and previously undetected malignant lesions by enhancing the clearance in areas of significant background activity. (f) Owing to its high‐quality images, TB‐PET is suitable for parametric imaging, which offers several advantages over conventional standardized uptake value imaging. However, TB‐PET still faces several challenges. There is a lack of consensus on the optimal dose and scan duration for clinical diagnosis using TB‐PET. Additionally, unified standards for parametric imaging via TB‐PET are yet to be established, and the full clinical significance of this technology remains under‐explored. The accompanying review (Part 1) covers TB‐PET data manipulation and analysis.

References

[1]

Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total‐body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169. https://doi.org/10.1126/scitranslmed.aaf6169

[2]

Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total‐body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12. https://doi.org/10.2967/jnumed.116.184028

[3]

Chen X, Hu P, Yu H, Tan H, He Y, Cao S, et al. Head‐to‐head intra‐individual comparison of total‐body 2‐[(18)F]FDG PET/CT and digital PET/CT in patients with malignant tumor: how sensitive could it be? Eur Radiol. 2023;33(11):7890–8. https://doi.org/10.1007/s00330-023-09825-4

[4]

Wang Y, Chen Z, Zhu Y, Zhao H, Li L, Huang G, et al. Total‐body [(68) Ga]Ga‐PSMA‐11 PET/CT improves detection rate compared with conventional [(68) Ga]Ga‐PSMA‐11 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imag. 2023;50(13):4096–106. https://doi.org/10.1007/s00259-023-06355-5

[5]

Hu Y, Liu G, Yu H, Gu J, Shi H. Diagnostic performance of total‐body (18)F‐FDG PET/CT with fast 2‐min acquisition for liver tumours: comparison with conventional PET/CT. Eur J Nucl Med Mol Imag. 2022;49(10):3538–46. https://doi.org/10.1007/s00259-022-05772-2

[6]

Zhang Y, Hu P, He Y, Yu H, Tan H, Liu G, et al. Ultrafast 30‐s total‐body PET/CT scan: a preliminary study. Eur J Nucl Med Mol Imag. 2022;49(8):2504–13. https://doi.org/10.1007/s00259-022-05838-1

[7]

Liu G, Chen S, Hu Y, Cao S, Yang X, Zhou Y, et al. Respiratory‐gated PET imaging with reduced acquisition time for suspect malignancies: the first experience in application of total‐body PET/CT. Eur Radiol. 2023;33(5):3366–76. https://doi.org/10.1007/s00330-022-09369-z

[8]

Cheng Z, Chen L, Wang X, Wang Y, Zhao M, Zan K, et al. Role of breath‐hold lung PET in stage IA pulmonary adenocarcinoma. Insights Imag. 2023;14(1):100. https://doi.org/10.1186/s13244-023-01446-1

[9]

Li Y, Wang J, Hu J, Jia J, Sun H, Zhao Y, et al. PET/CT scan without sedation: how to use total‐body PET/CT to salvage child's involuntary movement? Eur J Nucl Med Mol Imag. 2023;50(9):2912–3. https://doi.org/10.1007/s00259-023-06208-1

[10]

Zhang Q, Hu Y, Zhou C, Zhao Y, Zhang N, Zhou Y, et al. Reducing pediatric total‐body PET/CT imaging scan time with multimodal artificial intelligence technology. EJNMMI Phys. 2024;11(1):1. https://doi.org/10.1186/s40658-023-00605-z

[11]

Wen J, Zhu Y, Li L, Liu J, Chen Y, Chen R. Determination of optimal (68) Ga‐PSMA PET/CT imaging time in prostate cancers by total‐body dynamic PET/CT. Eur J Nucl Med Mol Imag. 2022;49(6):2086–95. https://doi.org/10.1007/s00259-021-05659-8

[12]

Chen R, Yang X, Yu X, Zhou X, Ng YL, Chen Y, et al. The feasibility of ultra‐early and fast total‐body [(68) Ga]Ga‐FAPI‐04 PET/CT scan. Eur J Nucl Med Mol Imag. 2023;50(3):661–6. https://doi.org/10.1007/s00259-022-06004-3

[13]

He Y, Gu Y, Yu H, Wu B, Wang S, Tan H, et al. Optimizing acquisition times for total‐body positron emission tomography/computed tomography with half‐dose (18)F‐fluorodeoxyglucose in oncology patients. EJNMMI Phys. 2022;9(1):45. https://doi.org/10.1186/s40658-022-00474-y

[14]

Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra‐low‐activity total‐body dynamic PET imaging allows equal performance to full‐activity PET imaging for investigating kinetic metrics of (18)F‐FDG in healthy volunteers. Eur J Nucl Med Mol Imag. 2021;48(8):2373–83. https://doi.org/10.1007/s00259-020-05173-3

[15]

Zhao YM, Li YH, Chen T, Zhang WG, Wang LH, Feng J, et al. Image quality and lesion detectability in low‐dose pediatric (18)F‐FDG scans using total‐body PET/CT. Eur J Nucl Med Mol Imag. 2021;48(11):3378–85. https://doi.org/10.1007/s00259-021-05304-4

[16]

Liu Y, Li L, Qin Y, Chen Z, Zhao H, Wang X, et al. Total‐body PET/CT with half‐dose [(68) Ga]Ga‐PSMA‐11 for biochemical recurrent prostate cancer: comparable diagnostic value to short axial field‐of‐view PET/CT with full‐dose [(68) Ga]Ga‐PSMA‐11. Eur J Nucl Med Mol Imag. 2023;51(2):581–9. https://doi.org/10.1007/s00259-023-06466-z

[17]

Chen Z, Wang Y, Yang X, Li L, Huo Y, Yu X, et al. Feasibility of acquisitions using total‐body PET/CT with a half‐dose [(68)Ga]Ga‐FAPI‐04 activity in oncology patients. Eur J Nucl Med Mol Imag. 2023;50(13):3961–9. https://doi.org/10.1007/s00259-023-06354-6

[18]

Tang S, Hu Y, Zeng J, Li Z, Jiang Y, Li Y, et al. Significant CT dose reduction of 2‐[(18)F]FDG PET/CT in pretreatment pediatric lymphoma without compromising the diagnostic and staging efficacy. Eur Radiol. 2023;33(3):2248–57. https://doi.org/10.1007/s00330-022-09145-z

[19]

Liu G, Mao W, Yu H, Hu Y, Gu J, Shi H. One‐stop [(18)F]FDG and [(68)Ga]Ga‐DOTA‐FAPI‐04 total‐body PET/CT examination with dual‐low activity: a feasibility study. Eur J Nucl Med Mol Imag. 2023;50(8):2271–81. https://doi.org/10.1007/s00259-023-06207-2

[20]

Chen W, Liu L, Li Y, Li S, Li Z, Zhang W, et al. Evaluation of pediatric malignancies using total‐body PET/CT with half‐dose [(18)F]‐FDG. Eur J Nucl Med Mol Imag. 2022;49(12):4145–55. https://doi.org/10.1007/s00259-022-05893-8

[21]

Ng QK, Triumbari EKA, Omidvari N, Cherry SR, Badawi RD, Nardo L. Total‐body PET/CT ‐ first clinical experiences and future perspectives. Semin Nucl Med. 2022;52(3):330–9. https://doi.org/10.1053/j.semnuclmed.2022.01.002

[22]

Dickson J, Eberlein U, Lassmann M. The effect of modern PET technology and techniques on the EANM paediatric dosage card. Eur J Nucl Med Mol Imag. 2022;49(6):1964–9. https://doi.org/10.1007/s00259-021-05635-2

[23]

Nardo L, Schmall JP, Werner TJ, Malogolowkin M, Badawi RD, Alavi A. Potential roles of total‐body PET/computed tomography in pediatric imaging. Pet Clin. 2020;15(3):271–9. https://doi.org/10.1016/j.cpet.2020.03.009

[24]

Yu X, Sun H, Xu L, Han Y, Wang C, Li L, et al. Improved accuracy of the biodistribution and internal radiation dosimetry of (13) N‐ammonia using a total‐body PET/CT scanner. Med Phys. 2023;50(9):5865–74. https://doi.org/10.1002/mp.16450

[25]

Costa G, Spencer B, Omidvari N, Foster C, Rusnak M, Hunt H, et al. Radioembolization dosimetry with total‐body (90)Y PET. J Nucl Med. 2022;63(7):1101–7. https://doi.org/10.2967/jnumed.121.263145

[26]

Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, et al. First‐in‐human immunoPET imaging of COVID‐19 convalescent patients using dynamic total‐body PET and a CD8‐targeted minibody. Sci Adv. 2023;9(41):eadh7968. https://doi.org/10.1126/sciadv.adh7968

[27]

Duan X, Xia L, Zhang Z, Ren Y, Pomper MG, Rowe SP, et al. First‐in‐Human study of the radioligand 68Ga‐N188 targeting nectin‐4 for PET/CT imaging of advanced urothelial carcinoma. Clin Cancer Res. 2023;29(17):3395–407. https://doi.org/10.1158/1078-0432.CCR-23-0609

[28]

Hu K, Wang L, Wu H, Huang S, Tian Y, Wang Q, et al. [(18)F]FAPI‐42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [(68)Ga]Ga‐FAPI‐04. Eur J Nucl Med Mol Imag. 2022;49(8):2833–43. https://doi.org/10.1007/s00259-021-05646-z

[29]

Liu J, Guo X, Wen L, Wang L, Liu F, Song G, et al. Comparison of renal clearance of [(18)F]AlF‐RESCA‐HER2‐BCH and [(18)F]AlF‐NOTA‐HER2‐BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imag. 2023;50(9):2775–86. https://doi.org/10.1007/s00259-023-06232-1

[30]

Li L, Lin X, Wang L, Ma X, Zeng Z, Liu F, et al. Immuno‐PET of colorectal cancer with a CEA‐targeted [68 Ga]Ga‐nanobody: from bench to bedside. Eur J Nucl Med Mol Imag. 2023;50(12):3735–49. https://doi.org/10.1007/s00259-023-06313-1

[31]

Xin M, Wang Y, Yang X, Li L, Wang C, Gu Y, et al. Changes of “brain‐GI” interplay in Parkinson’s disease: a pilot study of dynamic total‐body [11C] CFT PET/CT and kinetic modeling. Authorea Preprints. 2023.

[32]

Adili D, Cai D, Wu B, Yu H, Gu Y, Zhang Y, et al. An exploration of the feasibility and clinical value of half‐dose 5‐h total‐body (18)F‐FDG PET/CT scan in patients with Takayasu arteritis. Eur J Nucl Med Mol Imag. 2023;50(8):2375–85. https://doi.org/10.1007/s00259-023-06168-6

[33]

Pantel AR, Viswanath V, Daube‐Witherspoon ME, Dubroff JG, Muehllehner G, Parma MJ, et al. PennPET explorer: human imaging on a whole‐body imager. J Nucl Med. 2020;61(1):144–51. https://doi.org/10.2967/jnumed.119.231845

[34]

Bertoldo A, Rizzo G, Veronese M. Deriving physiological information from PET images: from SUV to compartmental modelling. Clin Transl Imag. 2014;2(3):239–51. https://doi.org/10.1007/s40336-014-0067-x

[35]

Dimitrakopoulou‐Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imag. 2021;48(1):21–39. https://doi.org/10.1007/s00259-020-04843-6

[36]

Zaidi H, Karakatsanis N. Towards enhanced PET quantification in clinical oncology. Br J Radiol. 2018;91(1081):20170508. https://doi.org/10.1259/bjr.20170508

[37]

Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cerebr Blood Flow Metabol. 2001;21(6):635–52. https://doi.org/10.1097/00004647-200106000-00002

[38]

Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total‐body PET imaging using the 2‐meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85. https://doi.org/10.1088/1361-6560/aa5e46

[39]

Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total‐body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91. https://doi.org/10.2967/jnumed.119.230565

[40]

Wang Y, Nardo L, Spencer BA, Abdelhafez YG, Li EJ, Omidvari N, et al. Total‐body Multiparametric PET quantification of (18) F‐FDG delivery and metabolism in the study of COVID‐19 recovery. medRxiv. 2023. https://doi.org/10.1101/2023.03.26.23287673

[41]

Gu F, Wu Q. Quantitation of dynamic total‐body PET imaging: recent developments and future perspectives. Eur J Nucl Med Mol Imag. 2023;50(12):3538–57. https://doi.org/10.1007/s00259-023-06299-w

[42]

Wang G, Nardo L, Parikh M, Abdelhafez YG, Li E, Spencer BA, et al. Total‐body PET multiparametric imaging of cancer using a voxelwise strategy of compartmental modeling. J Nucl Med. 2022;63(8):1274–81. https://doi.org/10.2967/jnumed.121.262668

[43]

Wu Y, Feng T, Zhao Y, Xu T, Fu F, Huang Z, et al. Whole‐body parametric imaging of (18)F‐FDG PET using uEXPLORER with reduced scanning time. J Nucl Med. 2022;63(4):622–8. https://doi.org/10.2967/jnumed.120.261651

[44]

Sari H, Eriksson L, Mingels C, Alberts I, Casey ME, Afshar‐Oromieh A, et al. Feasibility of using abbreviated scan protocols with population‐based input functions for accurate kinetic modeling of [(18)F]‐FDG datasets from a long axial FOV PET scanner. Eur J Nucl Med Mol Imag. 2023;50(2):257–65. https://doi.org/10.1007/s00259-022-05983-7

[45]

Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, et al. Kinetic metrics of (18)F‐FDG in normal human organs identified by systematic dynamic total‐body positron emission tomography. Eur J Nucl Med Mol Imag. 2021;48(8):2363–72. https://doi.org/10.1007/s00259-020-05124-y

[46]

Wu Y, Feng T, Shen Y, Fu F, Meng N, Li X, et al. Total‐body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys. 2022;49(7):4529–39. https://doi.org/10.1002/mp.15647

[47]

Wang D, Qiu B, Liu Q, Xia L, Liu S, Zheng C, et al. Patlak‐Ki derived from ultra‐high sensitivity dynamic total body [(18)F]FDG PET/CT correlates with the response to induction immuno‐chemotherapy in locally advanced non‐small cell lung cancer patients. Eur J Nucl Med Mol Imag. 2023;50(11):3400–13. https://doi.org/10.1007/s00259-023-06298-x

[48]

Chen R, Ng YL, Yang X, Zhu Y, Li L, Zhao H, et al. Comparison of parametric imaging and SUV imaging with [(68) Ga]Ga‐PSMA‐11 using dynamic total‐body PET/CT in prostate cancer. Eur J Nucl Med Mol Imag. 2023;51(2):568–80. https://doi.org/10.1007/s00259-023-06456-1

[49]

Chen R, Yang X, Ng YL, Yu X, Huo Y, Xiao X, et al. First total‐body kinetic modeling and parametric imaging of dynamic (68)Ga‐FAPI‐04 PET in pancreatic and gastric cancer. J Nucl Med. 2023;64(6):960–7. https://doi.org/10.2967/jnumed.122.264988

[50]

Li J, Ni B, Yu X, Wang C, Li L, Zhou Y, et al. Metabolic kinetic modeling of [(11)C]methionine based on total‐body PET in multiple myeloma. Eur J Nucl Med Mol Imag. 2023;50(9):2683–91. https://doi.org/10.1007/s00259-023-06219-y

[51]

Yuan H, Zhang G, Sun T, Ren J, Zhang Q, Xiang Z, et al. Kinetic modeling and parametric imaging of (18) F‐PSMA‐11: an evaluation based on total‐body dynamic positron emission tomography scans. Med Phys. 2023;51(1):156–66. https://doi.org/10.1002/mp.16876

[52]

Chen R, Ng YL, Yang X, Zhu Y, Li L, Zhao H, et al. Assessing dynamic metabolic heterogeneity in prostate cancer patients via total‐body [(68)Ga]Ga‐PSMA‐11 PET/CT imaging: quantitative analysis of [(68)Ga]Ga‐PSMA‐11 uptake in pathological lesions and normal organs. Eur J Nucl Med Mol Imag. 2023;51(3):896–906. https://doi.org/10.1007/s00259-023-06475-y

[53]

Li EJ, Lopez JE, Spencer BA, Abdelhafez Y, Badawi RD, Wang G, et al. Total‐body perfusion imaging with [(11)C]‐Butanol. J Nucl Med. 2023;64(11):1831–8. https://doi.org/10.2967/jnumed.123.265659

[54]

Tan H, Cai D, Sui X, Qi C, Mao W, Zhang Y, et al. Investigating ultra‐low‐dose total‐body [18F]‐FDG PET/CT in colorectal cancer: initial experience. Eur J Nucl Med Mol Imag. 2022;49(3):1002–11. https://doi.org/10.1007/s00259-021-05537-3

[55]

Lu W, Duan Y, Li K, Cheng Z, Qiu J. Metabolic interactions between organs in overweight and obesity using total‐body positron emission tomography. Int J Obes. 2023;48(1):94–102. https://doi.org/10.1038/s41366-023-01394-2

iRADIOLOGY
Pages 328-338
Cite this article:
Chen R, Sun T, Huang G, et al. Current progress and future perspectives in total‐body positron emission tomography/computed tomography. Part Ⅱ: Clinical applications. iRADIOLOGY, 2024, 2(3): 328-338. https://doi.org/10.1002/ird3.64

84

Views

1

Downloads

0

Crossref

Altmetrics

Received: 17 January 2024
Accepted: 31 January 2024
Published: 07 March 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return