AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Small molecule probes for the specific imaging of monoamine oxidase A and monoamine oxidase B

Yi Fang1,2Zhengping Chen1( )Min Yang1( )
NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, China
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
Show Author Information

Graphical Abstract

Abstract

Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO‐A) and monoamine oxidase B (MAO‐B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in‐depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO‐related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO‐A and MAO‐B, including radiolabeled probes, fluorescent probes, and a 19F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.

References

[1]

Hare MLC. Tyramine oxidase: a new enzyme system in liver. Biochem J. 1928;22(4):968–79. https://doi.org/10.1042/bj0220968

[2]

Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as anti‐Alzheimer’s disease agents: a review. Eur J Med Chem. 2020;206:112787. https://doi.org/10.1016/j.ejmech.2020.112787

[3]

Ramsay RR, Albreht A. Kinetics, mechanism, and inhibition of monoamine oxidase. J Neural Transm. 2018;125(11):1659–83. https://doi.org/10.1007/s00702-018-1861-9

[4]

Santin Y, Resta J, Parini A, Mialet‐Perez J. Monoamine oxidases in age‐associated diseases: new perspectives for old enzymes. Ageing Res Rev. 2021;66:101256. https://doi.org/10.1016/j.arr.2021.101256

[5]

Yu J, Gao B. Molecular imaging for cancer immunotherapy. iRADIOLOGY. 2023;1(1):3–17. https://doi.org/10.1002/ird3.12

[6]

Meyer JH, Braga J. Development and clinical application of positron emission tomography imaging agents for monoamine oxidase B. Front Neurosci. 2022;15:773404. https://doi.org/10.3389/fnins.2021.773404

[7]

Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase‐A and monoamine oxidase‐B in vitro and in vivo. Mol Cell Probes. 2021;55:101686. https://doi.org/10.1016/j.mcp.2020.101686

[8]

Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun. 2023;14(1):3257. https://doi.org/10.1038/s41467-023-36377-4

[9]

Zimmer L. Positron emission tomography for the discovery of new drugs in psychiatry. ACS Chem Neurosci. 2023;14(4):524–6. https://doi.org/10.1021/acschemneuro.3c00036

[10]

Ritt P. Recent developments in SPECT/CT. Semin Nucl Med. 2022;52(3):276–85. https://doi.org/10.1053/j.semnuclmed.2022.01.004

[11]

Rando RR. Mechanism‐based enzyme inactivators. Pharmacol Rev. 1984;36(2):111–42. https://doi.org/10.1016/0076-6879(95)49038-8

[12]

MacGregor RR, Halldin C, Fowler JS, Wolf AP, Arnett CD, Langström B, et al. Selective, irreversible in vivo binding of [11C]clorgyline and [11C]‐L‐deprenyl in mice: potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmacol. 1985;34(17):3207–10. https://doi.org/10.1016/0006-2952(85)90173-x

[13]

Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C‐labeled suicide inactivators and PET. Science. 1987;235(4787):481–5. https://doi.org/10.1126/science.3099392

[14]

Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, et al. Activated MAO‐B in the brain of Alzheimer patients, demonstrated by [11C]‐L‐deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58(1):60–8. https://doi.org/10.1016/j.neuint.2010.10.013

[15]

Fowler JS, Logan J, Ding Y.‐S, Franceschi D, Wang G.‐J, Volkow ND, et al. Non‐MAO A binding of clorgyline in white matter in human brain. J Neurochem. 2008;79(5):1039–46. https://doi.org/10.1046/j.1471-4159.2001.00649.x

[16]

Nag S, Varrone A, Tóth M, Thiele A, Kettschau G, Heinrich T, et al. In vivo evaluation in cynomolgus monkey brain and metabolism of [18F]fluorodeprenyl: a new MAO‐B pet radioligand. Synapse. 2012;66(4):323–30. https://doi.org/10.1002/syn.21514

[17]

Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, et al. Synthesis and evaluation of [18F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO‐B). Bioorg Med Chem. 2012;20(9):3065–71. https://doi.org/10.1016/j.bmc.2012.02.056

[18]

Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A, et al. Development of a novel fluorine‐18 labeled deuterated fluororasagiline ([18F]fluororasagiline‐D2) radioligand for PET studies of monoamino oxidase B (MAO‐B). Bioorg Med Chem. 2013;21(21):6634–41. https://doi.org/10.1016/j.bmc.2013.08.019

[19]

Fowler JS, Wang G.‐J, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon‐11‐L‐deprenyl and carbon‐11‐deprenyl‐D2 for MAO B mapping. J Nucl Med. 1995;36(7):1255–62.

[20]

Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al. Neuropharmacological actions of cigarette smoke. J Addict Dis. 1998;17(1):23–34. https://doi.org/10.1300/J069v17n01_03

[21]

Fowler JS, Wang GJ, Volkow ND, Franceschi D, Logan J, Pappas N, et al. Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non‐smokers. Nicotine Tob Res. 1999;1(4):325–9. https://doi.org/10.1080/14622299050011451

[22]

Carter SF, Schoell M, Almkvist O, Wall A, Engler H, Långström B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C‐deuterium‐L‐deprenyl: a multitracer PET paradigm combining 11C‐Pittsburgh compound B and 18F‐FDG. J Nucl Med. 2012;53(1):37–46. https://doi.org/10.2967/jnumed.110.087031

[23]

Nag S, Lehmann L, Heinrich T, Thiele A, Kettschau G, Nakao R, et al. Synthesis of three novel fluorine‐18 labelled analogues of L‐deprenyl for positron emission tomography (PET) studies of monoamine oxidase B (MAO‐B). J Med Chem. 2011;54(20):7023–9. https://doi.org/10.1021/jm200710b

[24]

Nag S, Fazio P, Lehmann L, Kettschau G, Heinrich T, Thiele A, et al. In vivo and in vitro characterization of a novel MAO‐B inhibitor radioligand, 18F‐Labeled deuterated fluorodeprenyl. J Nucl Med. 2016;57(2):315–20. https://doi.org/10.2967/jnumed.115.161083

[25]

Ametamey SM, Beer H.‐F, Guenther I, Antonini A, Leenders KL, Waldmeier PC, et al. Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A. Nucl Med Biol. 1996;23(3):229–34. https://doi.org/10.1016/0969-8051(95)02051-9

[26]

Bergström M, Westerberg G, Långström B. 11C‐harmine as a tracer for monoamine oxidase A (MAO‐A): In vitro and in vivo studies. Nucl Med Biol. 1997;24(4):287–93. https://doi.org/10.1016/s0969-8051(97)00013-9

[27]

Goller L, Bergström M, Nilsson S, Westerberg G, Långström B. MAO‐A enzyme binding in bladder‐cancer characterized with [C‐11]‐harmine in frozen‐section autoradiography. Oncol Rep. 1995;2(5):717–21. https://doi.org/10.3892/or.2.5.717

[28]

Örlefors H, Sundin A, Fasth K.‐J, Öberg K, Långström B, Eriksson B, et al. Demonstration of high monoaminoxidase‐A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo‐tumor visualization using positron emission tomography with 11C‐harmine. Nucl Med Biol. 2003;30(6):669–79. https://doi.org/10.1016/S0969-8051(03)00034-9

[29]

Herlin G, Persson B, Bergström M, Långström B, Aspelin P. 11C‐harmine as a potential PET tracer for ductal pancreas cancer: in vitro studies. Eur Radiol. 2003;13(4):729–33. https://doi.org/10.1007/s00330-002-1443-x

[30]

Zirbesegger K, Reyes L, Paolino A, Dapueto R, Arredondo F, Gambini JP, et al. Molecular imaging of monoamine oxidase A expression in highly aggressive prostate cancer: synthesis and preclinical evaluation of positron emission tomography tracers. ACS Pharmacol Transl Sci. 2023;6(11):1734–44. https://doi.org/10.1021/acsptsci.3c00175

[31]

Schieferstein H, Piel M, Beyerlein F, Lüddens H, Bausbacher N, Buchholz HG, et al. Selective binding to monoamine oxidase A: in vitro and in vivo evaluation of (18)F‐labeled β‐carboline derivatives. Bioorg Med Chem. 2015;23(3):612–23. https://doi.org/10.1016/j.bmc.2014.11.040

[32]

Saba W, Valette H, Peyronneau M.‐A, Bramoullé Y, Coulon C, Curet O, et al. [11C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: preclinical characterisation in nonhuman primate. Synapse. 2010;64(1):61–9. https://doi.org/10.1002/syn.20703

[33]

Dahl K, Bernard‐Gauthier V, Nag S, Varnäs K, Narayanaswami V, Mahdi Moein M, et al. Synthesis and preclinical evaluation of [18F]FSL25.1188, a reversible PET radioligand for monoamine oxidase‐B. Bioorg Med Chem Lett. 2019;29(13):1624–7. https://doi.org/10.1016/j.bmcl.2019.04.040

[34]

Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, et al. 18F‐SMBT‐1: a selective and reversible PET tracer for monoamine oxidase‐B imaging. J Nucl Med. 2021;62(2):253–8. https://doi.org/10.2967/jnumed.120.244400

[35]

Villemagne VL, Harada R, Doré V, Furumoto S, Mulligan R, Kudo Y, et al. Assessing reactive astrogliosis with 18F‐SMBT‐1 across the Alzheimer disease spectrum. J Nucl Med. 2022;63(10):1560–9. https://doi.org/10.2967/jnumed.121.263255

[36]

Bottlaender M, Dollé F, Guenther I, Roumenov D, Fuseau C, Bramoulle Y, et al. Mapping the cerebral monoamine oxidase type A: positron emission tomography characterization of the reversible selective inhibitor [11C]befloxatone. J Pharmacol Exp Ther. 2003;305(2):467–73. https://doi.org/10.1124/jpet.102.046953

[37]

Zanotti‐Fregonara P, Leroy C, Roumenov D, Trichard C, Martinot J.‐L, Bottlaender M. Kinetic analysis of [11C]befloxatone in the human brain, a selective radioligand to image monoamine oxidase A. EJNMMI Res. 2013;3(1):78. https://doi.org/10.1186/2191-219X-3-78

[38]

Jensen SB, Di Santo R, Olsen AK, Pedersen K, Costi R, Cirilli R, et al. Synthesis and cerebral uptake of 1‐(1‐[11C]methyl‐1H‐pyrrol‐2‐yl)‐2‐phenyl‐2‐(1‐pyrrolidinyl)ethanone, a novel tracer for positron emission tomography studies of monoamine oxidase type A. J Med Chem. 2008;51(6):1617–22. https://doi.org/10.1021/jm701378e

[39]

Maschauer S, Haller A, Riss PJ, Kuwert T, Prante O, Cumming P. Specific binding of [(18)F]fluoroethyl‐harmol to monoamine oxidase A in rat brain cryostat sections, and compartmental analysis of binding in living brain. J Neurochem. 2015;135(5):908–17. https://doi.org/10.1111/jnc.13370

[40]

Beer H.‐F, Rossetti I, Frey LD, Hasler PH, Schubiger PA. 123I‐Labeling and evaluation of Ro 43‐0463, a SPET tracer for MAO‐B imaging. Nucl Med Biol. 1995;22(7):929–36. https://doi.org/10.1016/0969-8051(95)00041-u

[41]

Bläuenstein P, Rémy N, Buck A, Ametamey S, Häberli M, Schubiger PA. In vivo properties of N‐(2‐aminoethyl)‐5‐halogeno‐2‐pyridinecarboxamide 18F‐ and 123I‐labelled reversible inhibitors of monoamine oxidase B. Nucl Med Biol. 1998;25(1):47–52. https://doi.org/10.1016/s0969-8051(97)00143-1

[42]

Hirata M, Kagawa S, Yoshimoto M, Ohmomo Y. Synthesis and characterization of radioiodinated MD‐230254: a new ligand for potential imaging of monoamine oxidase B activity by single photon emission computed tomography. Chem Pharm Bull. 2002;50(5):609–14. https://doi.org/10.1248/cpb.50.609

[43]

Bernard S, Fuseau C, Schmid L, Milcent R, Crouzel C. Synthesis and in vivo studies of a specific monoamine oxidase B inhibitor: 5‐[4‐(benzyloxy)phenyl]‐3‐(2‐cyanoethyl)‐1,3,4‐oxadiazol‐[11C]‐2(3H)‐one. Eur J Nucl Med. 1996;23(2):150–6. https://doi.org/10.1007/bf01731838

[44]

Yoshimoto M, Hirata M, Kagawa S, Magata Y, Ohmomo Y, Temma T. Synthesis and characterization of novel radiofluorinated probes for Positron Emission Tomography imaging of monoamine oxidase B. J Label Compd Radiopharm. 2019;62(9):580–7. https://doi.org/10.1002/jlcr.3779

[45]

Bramoullé Y, Puech F, Saba W, Valette H, Bottlaender M, George P, et al. Radiosynthesis of (S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐[11C]one ([11C]SL25.1188), a novel radioligand for imaging monoamine oxidase‐B with PET. J Label Compd Radiopharm. 2008;51(3):153–8. https://doi.org/10.1002/jlcr.1492

[46]

Vasdev N, Sadovski O, Garcia A, Dollé F, Meyer JH, Houle S, et al. Radiosynthesis of [11C]SL25.1188 via [11C]CO2 fixation for imaging monoamine oxidase B. J Label Compd Radiopharm. 2011;54(10):678–80. https://doi.org/10.1002/jlcr.1908

[47]

Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C]SL25.1188 positron emission tomography study. JAMA Psychiat. 2019;76(6):634–41. https://doi.org/10.1001/jamapsychiatry.2019.0044

[48]

Hicks JW, Sadovski O, Parkes J, Houle S, Hay BA, Carter RL, et al. Radiosynthesis and ex vivo evaluation of [18F]‐(S)‐3‐(6‐(3‐fluoropropoxy)benzo[d]isoxazol‐3‐yl)‐5‐(methoxymethyl)oxazolidin‐2‐one for imaging MAO‐B with PET. Bioorg Med Chem Lett. 2015;25(2):288–91. https://doi.org/10.1016/j.bmcl.2014.11.048

[49]

Villemagne VL, Harada R, Doré V, Furumoto S, Mulligan R, Kudo Y, et al. First‐in‐humans evaluation of 18F‐SMBT‐1, a novel 18F‐labeled monoamine oxidase‐B PET tracer for imaging reactive astrogliosis. J Nucl Med. 2022;63(10):1551–9. https://doi.org/10.2967/jnumed.121.263254

[50]

Dukić‐Stefanović S, Lai TH, Toussaint M, Clauß O, Jevtić II, Penjišević JZ, et al. In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg Med Chem Lett. 2021;48:128254. https://doi.org/10.1016/j.bmcl.2021.128254

[51]

Xu Y, Cen P, Ma L, Tian M, Zhang X, Zhang Q, et al. Highly efficient radiosynthesis and biological evaluation of [18F]safinamide, a radiolabelled anti‐Parkinsonian drug for positron emission tomography imaging. ChemMedChem. 2022;17(20):e202200472. https://doi.org/10.1002/cmdc.202200472

[52]

Moerlein SM, Stöcklin G, Pawlik G, Wienhard K, Heiss W.‐D. Regional cerebral pharmacokinetics of the dopaminergic neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine as examined by positron emission tomography in a baboon is altered by tranylcypromine. Neurosci Lett. 1986;66(2):205–9. https://doi.org/10.1016/0304-3940(86)90191-6

[53]

Brooks AF, Shao X, Quesada CA, Sherman P, Scott PJH, Kilbourn MR. In vivo metabolic trapping radiotracers for imaging monoamine oxidase‐A and ‐B enzymatic activity. ACS Chem Neurosci. 2015;6(12):1965–71. https://doi.org/10.1021/acschemneuro.5b00223

[54]

Shinotoh H, Inoue O, Suzuki K, Yamasaki T, Iyo M, Hashimoto K, et al. Kinetics of [11C]N,N‐dimethylphenylethylamine in mice and humans: potential for measurement of brain MAO‐B activity. J Nucl Med. 1987;28(6):1006–11. https://jnm.snmjournals.org/content/28/6/1006

[55]

Zhang J, Chai X, He X.‐P, Kim H.‐J, Yoon J, Tian H. Fluorogenic probes for disease‐relevant enzymes. Chem Soc Rev. 2019;48(2):683–722. https://doi.org/10.1039/C7CS00907K

[56]

Wang K, Liu C, Zhu H, Zhang Y, Su M, Wang X, et al. Recent advances in small‐molecule fluorescent probes for diagnosis of cancer cells/tissues. Coordin Chem Rev. 2023;477:214946. https://doi.org/10.1016/j.ccr.2022.214946

[57]

Wang X, Li Y, Wang J. Research progress of fluorescent probes for monoamine oxidases. Chin J Lumin. 2021;42(7):938–52. https://doi.org/10.37188/CJL.20210086

[58]

Zhou J, Geng Y, Wang Z. Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples. Methods. 2023;210:20–35. https://doi.org/10.1016/j.ymeth.2023.01.002

[59]

Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, et al. Recent advances in reaction‐based fluorescent probes for detecting monoamine oxidases in living systems. Analyst. 2019;144(12):3703–9. https://doi.org/10.1039/c9an00409b

[60]

Wu JB, Lin T.‐P, Gallagher JD, Kushal S, Chung LWK, Zhau HE, et al. Monoamine oxidase A inhibitor–near‐infrared dye conjugate reduces prostate tumor growth. J Am Chem Soc. 2015;137(6):2366–74. https://doi.org/10.1021/ja512613j

[61]

Kim WY, Won M, Salimi A, Sharma A, Lim JH, Kwon SH, et al. Monoamine Oxidase‐A targeting probe for prostate cancer imaging and inhibition of metastasis. Chem Comm. 2019;55(88):13267–70. https://doi.org/10.1039/c9cc07009e

[62]

Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R. Activity‐based probes for studying the activity of flavin‐dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed. 2012;51(28):7035–40. https://doi.org/10.1002/anie.201201955

[63]

Li L, Zhang C.‐W, Ge J, Qian L, Chai B.‐H, Zhu Q, et al. A small‐molecule probe for selective profiling and imaging of monoamine oxidase B activities in models of Parkinson’s disease. Angew Chem Int Ed. 2015;54(37):10821–5. https://doi.org/10.1002/anie.201504441

[64]

Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine oxidase (MAO) as a potential target for anticancer drug design and development. Molecules. 2021;26(19):6019. https://doi.org/10.3390/molecules26196019

[65]

Chen C.‐H, Wu BJ. Monoamine oxidase A: an emerging therapeutic target in prostate cancer. Front Oncol. 2023;13:1137050. https://doi.org/10.3389/fonc.2023.1137050

[66]

Irwin RW, Escobedo AR, Shih JC. Near‐infrared monoamine oxidase inhibitor biodistribution in a glioma mouse model. Pharm Res. 2021;38(3):461–71. https://doi.org/10.1007/s11095-021-03012-0

[67]

Zhao J, Ma T, Chang B, Fang J. Recent progress on NIR fluorescent probes for enzymes. Molecules. 2022;27(18):5922. https://doi.org/10.3390/molecules27185922

[68]

Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, et al. Recent advances in near‐infrared‐II fluorescence imaging for deep‐tissue molecular analysis and cancer diagnosis. Small. 2022;18(31):e2202035. https://doi.org/10.1002/smll.202202035

[69]

Chen D, Qin W, Fang H, Wang L, Peng B, Li L, et al. Recent progress in two‐photon small molecule fluorescent probes for enzymes. Chin Chem Lett. 2019;30(10):1738–44. https://doi.org/10.1016/j.cclet.2019.08.001

[70]

Jin H, Yang M, Sun Z, Gui R. Ratiometric two‐photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coordin Chem Rev. 2021;446:214114. https://doi.org/10.1016/j.ccr.2021.214114

[71]

Wu X, Wang R, Kwon N, Ma H, Yoon J. Activatable fluorescent probes for in situ imaging of enzymes. Chem Soc Rev. 2022;51(2):450–63. https://doi.org/10.1039/D1CS00543J

[72]

Lu S.‐B, Wei L, He W, Bi Z.‐Y, Qian Y, Wang J, et al. Recent advances in the enzyme‐activatable organic fluorescent probes for tumor imaging and therapy. ChemistryOpen. 2022;11(10):e202200137. https://doi.org/10.1002/open.202200137

[73]

Fan J, Hu M, Zhan P, Peng X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. 2013;42(1):29–43. https://doi.org/10.1039/c2cs35273g

[74]

Wu X, Li L, Shi W, Gong Q, Li X, Ma H. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A. Anal Chem. 2016;88(2):1440–6. https://doi.org/10.1021/acs.analchem.5b04303

[75]

Meng Z, Yang L, Yao C, Li H, Fu Y, Wang K, et al. Development of a naphthlimide‐based fluorescent probe for imaging monoamine oxidase A in living cells and zebrafish. Dyes Pigments. 2020;176:108208. https://doi.org/10.1016/j.dyepig.2020.108208

[76]

Fang H, Zhang H, Li L, Ni Y, Shi R, Li Z, et al. Rational design of two‐photon fluorogenic probe for visualizing monoamine oxidase A activity in human glioma tissues. Angew Chem Int Ed. 2020;59(19):7536–41. https://doi.org/10.1002/anie.202000059

[77]

Hu Y, Yin S.‐Y, Liu W, Li Z, Chen Y, Li J. Rationally designed monoamine oxidase A‐activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate. 2023;4(2):e256. https://doi.org/10.1002/agt2.256

[78]

Yang Z.‐M, Mo Q.‐Y, He J.‐M, Mo D.‐L, Li J, Chen H, et al. Mitochondrial‐targeted and near‐infrared fluorescence probe for bioimaging and evaluating monoamine oxidase A activity in hepatic fibrosis. ACS Sens. 2020;5(4):943–51. https://doi.org/10.1021/acssensors.9b02116

[79]

Li X, Shi D, Song Y, Xu Y, Gao Y, Qiu W, et al. Specific tracking of monoamine oxidase A in heart failure models by a far‐red fluorescent probe with an ultra large Stokes shift. Chin Chem Lett. 2022;33(3):1572–6. https://doi.org/10.1016/j.cclet.2021.08.114

[80]

Shu Y, Liu Y, Gao Y, Li J. pH‐Triggered mitochondria targeting fluorescent probe for detecting monoamine oxidases A in living cells. Sensor Actuat B Chem. 2023;390:133912. https://doi.org/10.1016/j.snb.2023.133912

[81]

Mei Y, Liu Z, Liu M, Gong J, He X, Zhang Q.‐W, et al. Two‐photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase‐A in neurons. Chem Commun. 2022;58(46):6657–60. https://doi.org/10.1039/d2cc01909d

[82]

Fang H, Shi R, Chen D, Qu Y, Wu Q, Yang X, et al. Intramolecular charge transfer enhancing strategy based MAO‐A specific two‐photon fluorescent probes for glioma cell/tissue imaging. Chem Commun. 2021;57(85):11260–3. https://doi.org/10.1039/d1cc04744b

[83]

Fang H, Li P, Shen C, Tang F, Ding A, Bai H, et al. A fluorogenic‐inhibitor‐based probe for profiling and imaging of monoamine oxidase A in live human glioma cells and clinical tissues. Sci China Chem. 2023;66(7):2053–61. https://doi.org/10.1007/s11426-023-1602-7

[84]

Wu J, Han C, Cao X, Lv Z, Wang C, Huo X, et al. Mitochondria targeting fluorescent probe for MAO‐A and the application in the development of drug candidate for neuroinflammation. Anal Chim Acta. 2022;1199:339573. https://doi.org/10.1016/j.aca.2022.339573

[85]

Wu X, Shi W, Li X, Ma H. A strategy for specific fluorescence imaging of monoamine oxidase A in living cells. Angew Chem Int Ed. 2017;56(48):15319–23. https://doi.org/10.1002/anie.201708428

[86]

Yang Z, Li W, Chen H, Mo Q, Li J, Zhao S, et al. Inhibitor structure‐guided design and synthesis of near‐infrared fluorescent probe for Monoamine Oxidase A (MAO‐A) and its application in living cells and in vivo. Chem Commun. 2019;55(17):2477–80. https://doi.org/10.1039/C8CC10084E

[87]

Shang J, Shi W, Li X, Ma H. Water‐soluble near‐infrared fluorescent probes for specific detection of monoamine oxidase A in living biosystems. Anal Chem. 2021;93(9):4285–90. https://doi.org/10.1021/acs.analchem.0c05283

[88]

Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, et al. Monoamine Oxidase A‐mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res. 2010;106(1):193–202. https://doi.org/10.1161/circresaha.109.198366

[89]

Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. BBA Mol Cell Res. 2011;1813(7):1323–32. https://doi.org/10.1016/j.bbamcr.2010.09.010

[90]

Long S, Chen L, Xiang Y, Song M, Zheng Y, Zhu Q. An activity‐based fluorogenic probe for sensitive and selective monoamine oxidase‐B detection. Chem Commun. 2012;48(57):7164–6. https://doi.org/10.1039/C2CC33089J

[91]

Xiang Y, He B, Li X, Zhu Q. The design and synthesis of novel ‘‘turn‐on’’ fluorescent probes to visualize monoamine oxidase‐B in living cells. RSC Adv. 2013;3(15):4876–9. https://doi.org/10.1039/C3RA22789H

[92]

Qin H, Li L, Li K, Yu X. Novel strategy of constructing fluorescent probe for MAO‐B via cascade reaction and its application in imaging MAO‐B in human astrocyte. Chin Chem Lett. 2019;30(1):71–4. https://doi.org/10.1016/j.cclet.2018.05.018

[93]

Li L, Zhang C.‐W, Chen GYJ, Zhu B, Chai C, Xu Q.‐H, et al. A sensitive two‐photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nat Commun. 2014;5(1):3276. https://doi.org/10.1038/ncomms4276

[94]

Fan N, Wu C, Zhou Y, Wang X, Li P, Liu Z, et al. Rapid two‐photon fluorescence imaging of monoamine oxidase B for diagnosis of early‐stage liver fibrosis in mice. Anal Chem. 2021;93(18):7110–7. https://doi.org/10.1021/acs.analchem.1c00815

[95]

Zhang Y, Wang J, Yi W, Tiemuer A, Yu H, Liu Y, et al. Activatable organic upconversion nanoprobe for bioimaging of monoamine oxidase B in Parkinson’s disease. Sensor Actuat B Chem. 2023;389:133880. https://doi.org/10.1016/j.snb.2023.133880

[96]

Wang X, Song X, Li P, Sun S, Mao J, Liu S, et al. Fluorescence method for monoamine oxidase B detection based on the cage function of glyoxal and phenethylamine on G‐rich DNA. Sensor Actuat B Chem. 2022;372:132624. https://doi.org/10.1016/j.snb.2022.132624

[97]

Wang R, Han X, You J, Yu F, Chen L. Ratiometric near‐infrared fluorescent probe for synergistic detection of monoamine oxidase B and its contribution to oxidative stress in cell and mice aging models. Anal Chem. 2018;90(6):4054–61. https://doi.org/10.1021/acs.analchem.7b05297

[98]

Cho A. Clever math enables MRI to map biomolecules. Science. 2019;363(6433):1263. https://doi.org/10.1126/science.363.6433.1263

[99]

Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small molecule probes for 19F magnetic resonance imaging. Anal Chem. 2023;95(1):70–82. https://doi.org/10.1021/acs.analchem.2c04539

[100]

Yamaguchi K, Ueki R, Nonaka H, Sugihara F, Matsuda T, Sando S. Design of chemical shift‐switching 19F magnetic resonance imaging probe for specific detection of human monoamine oxidase A. J Am Chem Soc. 2011;133(36):14208–11. https://doi.org/10.1021/ja2057506

[101]

Ma X, Mao M, He J, Liang C, Xie H.‐Y. Nanoprobe‐based molecular imaging for tumor stratification. Chem Soc Rev. 2023;52(18):6447–96. https://doi.org/10.1039/d3cs00063j

[102]

Yang Y, Yue S, Qiao Y, Zhang P, Jiang N, Ning Z, et al. Activable multi‐modal nanoprobes for imaging diagnosis and therapy of tumors. Front Chem. 2021;8:572471. https://doi.org/10.3389/fchem.2020.572471

[103]

Liu H, Wang R, Gao H, Chen L, Li X, Yu X, et al. Nanoprobes for PET/MR imaging. Adv Therap. 2023;7(2):2300232. https://doi.org/10.1002/adtp.202300232

iRADIOLOGY
Pages 191-215
Cite this article:
Fang Y, Chen Z, Yang M. Small molecule probes for the specific imaging of monoamine oxidase A and monoamine oxidase B. iRADIOLOGY, 2024, 2(2): 191-215. https://doi.org/10.1002/ird3.70

324

Views

11

Downloads

3

Crossref

3

Scopus

Altmetrics

Received: 26 December 2023
Accepted: 19 February 2024
Published: 27 March 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return