Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO‐A) and monoamine oxidase B (MAO‐B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in‐depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO‐related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO‐A and MAO‐B, including radiolabeled probes, fluorescent probes, and a 19F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.
Hare MLC. Tyramine oxidase: a new enzyme system in liver. Biochem J. 1928;22(4):968–79. https://doi.org/10.1042/bj0220968
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as anti‐Alzheimer’s disease agents: a review. Eur J Med Chem. 2020;206:112787. https://doi.org/10.1016/j.ejmech.2020.112787
Ramsay RR, Albreht A. Kinetics, mechanism, and inhibition of monoamine oxidase. J Neural Transm. 2018;125(11):1659–83. https://doi.org/10.1007/s00702-018-1861-9
Santin Y, Resta J, Parini A, Mialet‐Perez J. Monoamine oxidases in age‐associated diseases: new perspectives for old enzymes. Ageing Res Rev. 2021;66:101256. https://doi.org/10.1016/j.arr.2021.101256
Yu J, Gao B. Molecular imaging for cancer immunotherapy. iRADIOLOGY. 2023;1(1):3–17. https://doi.org/10.1002/ird3.12
Meyer JH, Braga J. Development and clinical application of positron emission tomography imaging agents for monoamine oxidase B. Front Neurosci. 2022;15:773404. https://doi.org/10.3389/fnins.2021.773404
Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase‐A and monoamine oxidase‐B in vitro and in vivo. Mol Cell Probes. 2021;55:101686. https://doi.org/10.1016/j.mcp.2020.101686
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun. 2023;14(1):3257. https://doi.org/10.1038/s41467-023-36377-4
Zimmer L. Positron emission tomography for the discovery of new drugs in psychiatry. ACS Chem Neurosci. 2023;14(4):524–6. https://doi.org/10.1021/acschemneuro.3c00036
Ritt P. Recent developments in SPECT/CT. Semin Nucl Med. 2022;52(3):276–85. https://doi.org/10.1053/j.semnuclmed.2022.01.004
Rando RR. Mechanism‐based enzyme inactivators. Pharmacol Rev. 1984;36(2):111–42. https://doi.org/10.1016/0076-6879(95)49038-8
MacGregor RR, Halldin C, Fowler JS, Wolf AP, Arnett CD, Langström B, et al. Selective, irreversible in vivo binding of [11C]clorgyline and [11C]‐L‐deprenyl in mice: potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmacol. 1985;34(17):3207–10. https://doi.org/10.1016/0006-2952(85)90173-x
Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C‐labeled suicide inactivators and PET. Science. 1987;235(4787):481–5. https://doi.org/10.1126/science.3099392
Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, et al. Activated MAO‐B in the brain of Alzheimer patients, demonstrated by [11C]‐L‐deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58(1):60–8. https://doi.org/10.1016/j.neuint.2010.10.013
Fowler JS, Logan J, Ding Y.‐S, Franceschi D, Wang G.‐J, Volkow ND, et al. Non‐MAO A binding of clorgyline in white matter in human brain. J Neurochem. 2008;79(5):1039–46. https://doi.org/10.1046/j.1471-4159.2001.00649.x
Nag S, Varrone A, Tóth M, Thiele A, Kettschau G, Heinrich T, et al. In vivo evaluation in cynomolgus monkey brain and metabolism of [18F]fluorodeprenyl: a new MAO‐B pet radioligand. Synapse. 2012;66(4):323–30. https://doi.org/10.1002/syn.21514
Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, et al. Synthesis and evaluation of [18F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO‐B). Bioorg Med Chem. 2012;20(9):3065–71. https://doi.org/10.1016/j.bmc.2012.02.056
Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A, et al. Development of a novel fluorine‐18 labeled deuterated fluororasagiline ([18F]fluororasagiline‐D2) radioligand for PET studies of monoamino oxidase B (MAO‐B). Bioorg Med Chem. 2013;21(21):6634–41. https://doi.org/10.1016/j.bmc.2013.08.019
Fowler JS, Wang G.‐J, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon‐11‐L‐deprenyl and carbon‐11‐deprenyl‐D2 for MAO B mapping. J Nucl Med. 1995;36(7):1255–62.
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al. Neuropharmacological actions of cigarette smoke. J Addict Dis. 1998;17(1):23–34. https://doi.org/10.1300/J069v17n01_03
Fowler JS, Wang GJ, Volkow ND, Franceschi D, Logan J, Pappas N, et al. Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non‐smokers. Nicotine Tob Res. 1999;1(4):325–9. https://doi.org/10.1080/14622299050011451
Carter SF, Schoell M, Almkvist O, Wall A, Engler H, Långström B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C‐deuterium‐L‐deprenyl: a multitracer PET paradigm combining 11C‐Pittsburgh compound B and 18F‐FDG. J Nucl Med. 2012;53(1):37–46. https://doi.org/10.2967/jnumed.110.087031
Nag S, Lehmann L, Heinrich T, Thiele A, Kettschau G, Nakao R, et al. Synthesis of three novel fluorine‐18 labelled analogues of L‐deprenyl for positron emission tomography (PET) studies of monoamine oxidase B (MAO‐B). J Med Chem. 2011;54(20):7023–9. https://doi.org/10.1021/jm200710b
Nag S, Fazio P, Lehmann L, Kettschau G, Heinrich T, Thiele A, et al. In vivo and in vitro characterization of a novel MAO‐B inhibitor radioligand, 18F‐Labeled deuterated fluorodeprenyl. J Nucl Med. 2016;57(2):315–20. https://doi.org/10.2967/jnumed.115.161083
Ametamey SM, Beer H.‐F, Guenther I, Antonini A, Leenders KL, Waldmeier PC, et al. Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A. Nucl Med Biol. 1996;23(3):229–34. https://doi.org/10.1016/0969-8051(95)02051-9
Bergström M, Westerberg G, Långström B. 11C‐harmine as a tracer for monoamine oxidase A (MAO‐A): In vitro and in vivo studies. Nucl Med Biol. 1997;24(4):287–93. https://doi.org/10.1016/s0969-8051(97)00013-9
Goller L, Bergström M, Nilsson S, Westerberg G, Långström B. MAO‐A enzyme binding in bladder‐cancer characterized with [C‐11]‐harmine in frozen‐section autoradiography. Oncol Rep. 1995;2(5):717–21. https://doi.org/10.3892/or.2.5.717
Örlefors H, Sundin A, Fasth K.‐J, Öberg K, Långström B, Eriksson B, et al. Demonstration of high monoaminoxidase‐A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo‐tumor visualization using positron emission tomography with 11C‐harmine. Nucl Med Biol. 2003;30(6):669–79. https://doi.org/10.1016/S0969-8051(03)00034-9
Herlin G, Persson B, Bergström M, Långström B, Aspelin P. 11C‐harmine as a potential PET tracer for ductal pancreas cancer: in vitro studies. Eur Radiol. 2003;13(4):729–33. https://doi.org/10.1007/s00330-002-1443-x
Zirbesegger K, Reyes L, Paolino A, Dapueto R, Arredondo F, Gambini JP, et al. Molecular imaging of monoamine oxidase A expression in highly aggressive prostate cancer: synthesis and preclinical evaluation of positron emission tomography tracers. ACS Pharmacol Transl Sci. 2023;6(11):1734–44. https://doi.org/10.1021/acsptsci.3c00175
Schieferstein H, Piel M, Beyerlein F, Lüddens H, Bausbacher N, Buchholz HG, et al. Selective binding to monoamine oxidase A: in vitro and in vivo evaluation of (18)F‐labeled β‐carboline derivatives. Bioorg Med Chem. 2015;23(3):612–23. https://doi.org/10.1016/j.bmc.2014.11.040
Saba W, Valette H, Peyronneau M.‐A, Bramoullé Y, Coulon C, Curet O, et al. [11C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: preclinical characterisation in nonhuman primate. Synapse. 2010;64(1):61–9. https://doi.org/10.1002/syn.20703
Dahl K, Bernard‐Gauthier V, Nag S, Varnäs K, Narayanaswami V, Mahdi Moein M, et al. Synthesis and preclinical evaluation of [18F]FSL25.1188, a reversible PET radioligand for monoamine oxidase‐B. Bioorg Med Chem Lett. 2019;29(13):1624–7. https://doi.org/10.1016/j.bmcl.2019.04.040
Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, et al. 18F‐SMBT‐1: a selective and reversible PET tracer for monoamine oxidase‐B imaging. J Nucl Med. 2021;62(2):253–8. https://doi.org/10.2967/jnumed.120.244400
Villemagne VL, Harada R, Doré V, Furumoto S, Mulligan R, Kudo Y, et al. Assessing reactive astrogliosis with 18F‐SMBT‐1 across the Alzheimer disease spectrum. J Nucl Med. 2022;63(10):1560–9. https://doi.org/10.2967/jnumed.121.263255
Bottlaender M, Dollé F, Guenther I, Roumenov D, Fuseau C, Bramoulle Y, et al. Mapping the cerebral monoamine oxidase type A: positron emission tomography characterization of the reversible selective inhibitor [11C]befloxatone. J Pharmacol Exp Ther. 2003;305(2):467–73. https://doi.org/10.1124/jpet.102.046953
Zanotti‐Fregonara P, Leroy C, Roumenov D, Trichard C, Martinot J.‐L, Bottlaender M. Kinetic analysis of [11C]befloxatone in the human brain, a selective radioligand to image monoamine oxidase A. EJNMMI Res. 2013;3(1):78. https://doi.org/10.1186/2191-219X-3-78
Jensen SB, Di Santo R, Olsen AK, Pedersen K, Costi R, Cirilli R, et al. Synthesis and cerebral uptake of 1‐(1‐[11C]methyl‐1H‐pyrrol‐2‐yl)‐2‐phenyl‐2‐(1‐pyrrolidinyl)ethanone, a novel tracer for positron emission tomography studies of monoamine oxidase type A. J Med Chem. 2008;51(6):1617–22. https://doi.org/10.1021/jm701378e
Maschauer S, Haller A, Riss PJ, Kuwert T, Prante O, Cumming P. Specific binding of [(18)F]fluoroethyl‐harmol to monoamine oxidase A in rat brain cryostat sections, and compartmental analysis of binding in living brain. J Neurochem. 2015;135(5):908–17. https://doi.org/10.1111/jnc.13370
Beer H.‐F, Rossetti I, Frey LD, Hasler PH, Schubiger PA. 123I‐Labeling and evaluation of Ro 43‐0463, a SPET tracer for MAO‐B imaging. Nucl Med Biol. 1995;22(7):929–36. https://doi.org/10.1016/0969-8051(95)00041-u
Bläuenstein P, Rémy N, Buck A, Ametamey S, Häberli M, Schubiger PA. In vivo properties of N‐(2‐aminoethyl)‐5‐halogeno‐2‐pyridinecarboxamide 18F‐ and 123I‐labelled reversible inhibitors of monoamine oxidase B. Nucl Med Biol. 1998;25(1):47–52. https://doi.org/10.1016/s0969-8051(97)00143-1
Hirata M, Kagawa S, Yoshimoto M, Ohmomo Y. Synthesis and characterization of radioiodinated MD‐230254: a new ligand for potential imaging of monoamine oxidase B activity by single photon emission computed tomography. Chem Pharm Bull. 2002;50(5):609–14. https://doi.org/10.1248/cpb.50.609
Bernard S, Fuseau C, Schmid L, Milcent R, Crouzel C. Synthesis and in vivo studies of a specific monoamine oxidase B inhibitor: 5‐[4‐(benzyloxy)phenyl]‐3‐(2‐cyanoethyl)‐1,3,4‐oxadiazol‐[11C]‐2(3H)‐one. Eur J Nucl Med. 1996;23(2):150–6. https://doi.org/10.1007/bf01731838
Yoshimoto M, Hirata M, Kagawa S, Magata Y, Ohmomo Y, Temma T. Synthesis and characterization of novel radiofluorinated probes for Positron Emission Tomography imaging of monoamine oxidase B. J Label Compd Radiopharm. 2019;62(9):580–7. https://doi.org/10.1002/jlcr.3779
Bramoullé Y, Puech F, Saba W, Valette H, Bottlaender M, George P, et al. Radiosynthesis of (S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐[11C]one ([11C]SL25.1188), a novel radioligand for imaging monoamine oxidase‐B with PET. J Label Compd Radiopharm. 2008;51(3):153–8. https://doi.org/10.1002/jlcr.1492
Vasdev N, Sadovski O, Garcia A, Dollé F, Meyer JH, Houle S, et al. Radiosynthesis of [11C]SL25.1188 via [11C]CO2 fixation for imaging monoamine oxidase B. J Label Compd Radiopharm. 2011;54(10):678–80. https://doi.org/10.1002/jlcr.1908
Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C]SL25.1188 positron emission tomography study. JAMA Psychiat. 2019;76(6):634–41. https://doi.org/10.1001/jamapsychiatry.2019.0044
Hicks JW, Sadovski O, Parkes J, Houle S, Hay BA, Carter RL, et al. Radiosynthesis and ex vivo evaluation of [18F]‐(S)‐3‐(6‐(3‐fluoropropoxy)benzo[d]isoxazol‐3‐yl)‐5‐(methoxymethyl)oxazolidin‐2‐one for imaging MAO‐B with PET. Bioorg Med Chem Lett. 2015;25(2):288–91. https://doi.org/10.1016/j.bmcl.2014.11.048
Villemagne VL, Harada R, Doré V, Furumoto S, Mulligan R, Kudo Y, et al. First‐in‐humans evaluation of 18F‐SMBT‐1, a novel 18F‐labeled monoamine oxidase‐B PET tracer for imaging reactive astrogliosis. J Nucl Med. 2022;63(10):1551–9. https://doi.org/10.2967/jnumed.121.263254
Dukić‐Stefanović S, Lai TH, Toussaint M, Clauß O, Jevtić II, Penjišević JZ, et al. In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg Med Chem Lett. 2021;48:128254. https://doi.org/10.1016/j.bmcl.2021.128254
Xu Y, Cen P, Ma L, Tian M, Zhang X, Zhang Q, et al. Highly efficient radiosynthesis and biological evaluation of [18F]safinamide, a radiolabelled anti‐Parkinsonian drug for positron emission tomography imaging. ChemMedChem. 2022;17(20):e202200472. https://doi.org/10.1002/cmdc.202200472
Moerlein SM, Stöcklin G, Pawlik G, Wienhard K, Heiss W.‐D. Regional cerebral pharmacokinetics of the dopaminergic neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine as examined by positron emission tomography in a baboon is altered by tranylcypromine. Neurosci Lett. 1986;66(2):205–9. https://doi.org/10.1016/0304-3940(86)90191-6
Brooks AF, Shao X, Quesada CA, Sherman P, Scott PJH, Kilbourn MR. In vivo metabolic trapping radiotracers for imaging monoamine oxidase‐A and ‐B enzymatic activity. ACS Chem Neurosci. 2015;6(12):1965–71. https://doi.org/10.1021/acschemneuro.5b00223
Shinotoh H, Inoue O, Suzuki K, Yamasaki T, Iyo M, Hashimoto K, et al. Kinetics of [11C]N,N‐dimethylphenylethylamine in mice and humans: potential for measurement of brain MAO‐B activity. J Nucl Med. 1987;28(6):1006–11. https://jnm.snmjournals.org/content/28/6/1006
Zhang J, Chai X, He X.‐P, Kim H.‐J, Yoon J, Tian H. Fluorogenic probes for disease‐relevant enzymes. Chem Soc Rev. 2019;48(2):683–722. https://doi.org/10.1039/C7CS00907K
Wang K, Liu C, Zhu H, Zhang Y, Su M, Wang X, et al. Recent advances in small‐molecule fluorescent probes for diagnosis of cancer cells/tissues. Coordin Chem Rev. 2023;477:214946. https://doi.org/10.1016/j.ccr.2022.214946
Wang X, Li Y, Wang J. Research progress of fluorescent probes for monoamine oxidases. Chin J Lumin. 2021;42(7):938–52. https://doi.org/10.37188/CJL.20210086
Zhou J, Geng Y, Wang Z. Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples. Methods. 2023;210:20–35. https://doi.org/10.1016/j.ymeth.2023.01.002
Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, et al. Recent advances in reaction‐based fluorescent probes for detecting monoamine oxidases in living systems. Analyst. 2019;144(12):3703–9. https://doi.org/10.1039/c9an00409b
Wu JB, Lin T.‐P, Gallagher JD, Kushal S, Chung LWK, Zhau HE, et al. Monoamine oxidase A inhibitor–near‐infrared dye conjugate reduces prostate tumor growth. J Am Chem Soc. 2015;137(6):2366–74. https://doi.org/10.1021/ja512613j
Kim WY, Won M, Salimi A, Sharma A, Lim JH, Kwon SH, et al. Monoamine Oxidase‐A targeting probe for prostate cancer imaging and inhibition of metastasis. Chem Comm. 2019;55(88):13267–70. https://doi.org/10.1039/c9cc07009e
Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R. Activity‐based probes for studying the activity of flavin‐dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed. 2012;51(28):7035–40. https://doi.org/10.1002/anie.201201955
Li L, Zhang C.‐W, Ge J, Qian L, Chai B.‐H, Zhu Q, et al. A small‐molecule probe for selective profiling and imaging of monoamine oxidase B activities in models of Parkinson’s disease. Angew Chem Int Ed. 2015;54(37):10821–5. https://doi.org/10.1002/anie.201504441
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine oxidase (MAO) as a potential target for anticancer drug design and development. Molecules. 2021;26(19):6019. https://doi.org/10.3390/molecules26196019
Chen C.‐H, Wu BJ. Monoamine oxidase A: an emerging therapeutic target in prostate cancer. Front Oncol. 2023;13:1137050. https://doi.org/10.3389/fonc.2023.1137050
Irwin RW, Escobedo AR, Shih JC. Near‐infrared monoamine oxidase inhibitor biodistribution in a glioma mouse model. Pharm Res. 2021;38(3):461–71. https://doi.org/10.1007/s11095-021-03012-0
Zhao J, Ma T, Chang B, Fang J. Recent progress on NIR fluorescent probes for enzymes. Molecules. 2022;27(18):5922. https://doi.org/10.3390/molecules27185922
Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, et al. Recent advances in near‐infrared‐II fluorescence imaging for deep‐tissue molecular analysis and cancer diagnosis. Small. 2022;18(31):e2202035. https://doi.org/10.1002/smll.202202035
Chen D, Qin W, Fang H, Wang L, Peng B, Li L, et al. Recent progress in two‐photon small molecule fluorescent probes for enzymes. Chin Chem Lett. 2019;30(10):1738–44. https://doi.org/10.1016/j.cclet.2019.08.001
Jin H, Yang M, Sun Z, Gui R. Ratiometric two‐photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coordin Chem Rev. 2021;446:214114. https://doi.org/10.1016/j.ccr.2021.214114
Wu X, Wang R, Kwon N, Ma H, Yoon J. Activatable fluorescent probes for in situ imaging of enzymes. Chem Soc Rev. 2022;51(2):450–63. https://doi.org/10.1039/D1CS00543J
Lu S.‐B, Wei L, He W, Bi Z.‐Y, Qian Y, Wang J, et al. Recent advances in the enzyme‐activatable organic fluorescent probes for tumor imaging and therapy. ChemistryOpen. 2022;11(10):e202200137. https://doi.org/10.1002/open.202200137
Fan J, Hu M, Zhan P, Peng X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. 2013;42(1):29–43. https://doi.org/10.1039/c2cs35273g
Wu X, Li L, Shi W, Gong Q, Li X, Ma H. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A. Anal Chem. 2016;88(2):1440–6. https://doi.org/10.1021/acs.analchem.5b04303
Meng Z, Yang L, Yao C, Li H, Fu Y, Wang K, et al. Development of a naphthlimide‐based fluorescent probe for imaging monoamine oxidase A in living cells and zebrafish. Dyes Pigments. 2020;176:108208. https://doi.org/10.1016/j.dyepig.2020.108208
Fang H, Zhang H, Li L, Ni Y, Shi R, Li Z, et al. Rational design of two‐photon fluorogenic probe for visualizing monoamine oxidase A activity in human glioma tissues. Angew Chem Int Ed. 2020;59(19):7536–41. https://doi.org/10.1002/anie.202000059
Hu Y, Yin S.‐Y, Liu W, Li Z, Chen Y, Li J. Rationally designed monoamine oxidase A‐activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate. 2023;4(2):e256. https://doi.org/10.1002/agt2.256
Yang Z.‐M, Mo Q.‐Y, He J.‐M, Mo D.‐L, Li J, Chen H, et al. Mitochondrial‐targeted and near‐infrared fluorescence probe for bioimaging and evaluating monoamine oxidase A activity in hepatic fibrosis. ACS Sens. 2020;5(4):943–51. https://doi.org/10.1021/acssensors.9b02116
Li X, Shi D, Song Y, Xu Y, Gao Y, Qiu W, et al. Specific tracking of monoamine oxidase A in heart failure models by a far‐red fluorescent probe with an ultra large Stokes shift. Chin Chem Lett. 2022;33(3):1572–6. https://doi.org/10.1016/j.cclet.2021.08.114
Shu Y, Liu Y, Gao Y, Li J. pH‐Triggered mitochondria targeting fluorescent probe for detecting monoamine oxidases A in living cells. Sensor Actuat B Chem. 2023;390:133912. https://doi.org/10.1016/j.snb.2023.133912
Mei Y, Liu Z, Liu M, Gong J, He X, Zhang Q.‐W, et al. Two‐photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase‐A in neurons. Chem Commun. 2022;58(46):6657–60. https://doi.org/10.1039/d2cc01909d
Fang H, Shi R, Chen D, Qu Y, Wu Q, Yang X, et al. Intramolecular charge transfer enhancing strategy based MAO‐A specific two‐photon fluorescent probes for glioma cell/tissue imaging. Chem Commun. 2021;57(85):11260–3. https://doi.org/10.1039/d1cc04744b
Fang H, Li P, Shen C, Tang F, Ding A, Bai H, et al. A fluorogenic‐inhibitor‐based probe for profiling and imaging of monoamine oxidase A in live human glioma cells and clinical tissues. Sci China Chem. 2023;66(7):2053–61. https://doi.org/10.1007/s11426-023-1602-7
Wu J, Han C, Cao X, Lv Z, Wang C, Huo X, et al. Mitochondria targeting fluorescent probe for MAO‐A and the application in the development of drug candidate for neuroinflammation. Anal Chim Acta. 2022;1199:339573. https://doi.org/10.1016/j.aca.2022.339573
Wu X, Shi W, Li X, Ma H. A strategy for specific fluorescence imaging of monoamine oxidase A in living cells. Angew Chem Int Ed. 2017;56(48):15319–23. https://doi.org/10.1002/anie.201708428
Yang Z, Li W, Chen H, Mo Q, Li J, Zhao S, et al. Inhibitor structure‐guided design and synthesis of near‐infrared fluorescent probe for Monoamine Oxidase A (MAO‐A) and its application in living cells and in vivo. Chem Commun. 2019;55(17):2477–80. https://doi.org/10.1039/C8CC10084E
Shang J, Shi W, Li X, Ma H. Water‐soluble near‐infrared fluorescent probes for specific detection of monoamine oxidase A in living biosystems. Anal Chem. 2021;93(9):4285–90. https://doi.org/10.1021/acs.analchem.0c05283
Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, et al. Monoamine Oxidase A‐mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res. 2010;106(1):193–202. https://doi.org/10.1161/circresaha.109.198366
Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. BBA Mol Cell Res. 2011;1813(7):1323–32. https://doi.org/10.1016/j.bbamcr.2010.09.010
Long S, Chen L, Xiang Y, Song M, Zheng Y, Zhu Q. An activity‐based fluorogenic probe for sensitive and selective monoamine oxidase‐B detection. Chem Commun. 2012;48(57):7164–6. https://doi.org/10.1039/C2CC33089J
Xiang Y, He B, Li X, Zhu Q. The design and synthesis of novel ‘‘turn‐on’’ fluorescent probes to visualize monoamine oxidase‐B in living cells. RSC Adv. 2013;3(15):4876–9. https://doi.org/10.1039/C3RA22789H
Qin H, Li L, Li K, Yu X. Novel strategy of constructing fluorescent probe for MAO‐B via cascade reaction and its application in imaging MAO‐B in human astrocyte. Chin Chem Lett. 2019;30(1):71–4. https://doi.org/10.1016/j.cclet.2018.05.018
Li L, Zhang C.‐W, Chen GYJ, Zhu B, Chai C, Xu Q.‐H, et al. A sensitive two‐photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nat Commun. 2014;5(1):3276. https://doi.org/10.1038/ncomms4276
Fan N, Wu C, Zhou Y, Wang X, Li P, Liu Z, et al. Rapid two‐photon fluorescence imaging of monoamine oxidase B for diagnosis of early‐stage liver fibrosis in mice. Anal Chem. 2021;93(18):7110–7. https://doi.org/10.1021/acs.analchem.1c00815
Zhang Y, Wang J, Yi W, Tiemuer A, Yu H, Liu Y, et al. Activatable organic upconversion nanoprobe for bioimaging of monoamine oxidase B in Parkinson’s disease. Sensor Actuat B Chem. 2023;389:133880. https://doi.org/10.1016/j.snb.2023.133880
Wang X, Song X, Li P, Sun S, Mao J, Liu S, et al. Fluorescence method for monoamine oxidase B detection based on the cage function of glyoxal and phenethylamine on G‐rich DNA. Sensor Actuat B Chem. 2022;372:132624. https://doi.org/10.1016/j.snb.2022.132624
Wang R, Han X, You J, Yu F, Chen L. Ratiometric near‐infrared fluorescent probe for synergistic detection of monoamine oxidase B and its contribution to oxidative stress in cell and mice aging models. Anal Chem. 2018;90(6):4054–61. https://doi.org/10.1021/acs.analchem.7b05297
Cho A. Clever math enables MRI to map biomolecules. Science. 2019;363(6433):1263. https://doi.org/10.1126/science.363.6433.1263
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small molecule probes for 19F magnetic resonance imaging. Anal Chem. 2023;95(1):70–82. https://doi.org/10.1021/acs.analchem.2c04539
Yamaguchi K, Ueki R, Nonaka H, Sugihara F, Matsuda T, Sando S. Design of chemical shift‐switching 19F magnetic resonance imaging probe for specific detection of human monoamine oxidase A. J Am Chem Soc. 2011;133(36):14208–11. https://doi.org/10.1021/ja2057506
Ma X, Mao M, He J, Liang C, Xie H.‐Y. Nanoprobe‐based molecular imaging for tumor stratification. Chem Soc Rev. 2023;52(18):6447–96. https://doi.org/10.1039/d3cs00063j
Yang Y, Yue S, Qiao Y, Zhang P, Jiang N, Ning Z, et al. Activable multi‐modal nanoprobes for imaging diagnosis and therapy of tumors. Front Chem. 2021;8:572471. https://doi.org/10.3389/fchem.2020.572471
Liu H, Wang R, Gao H, Chen L, Li X, Yu X, et al. Nanoprobes for PET/MR imaging. Adv Therap. 2023;7(2):2300232. https://doi.org/10.1002/adtp.202300232
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.