Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Radiation‐induced heart disease (RIHD) is a heterogeneous, delayed, and potentially fatal adverse reaction to radiation that can damage all structures of the heart, including the pericardium, myocardium, coronary arteries, valves, and conduction system, leading to a series of diseases. Acute and chronic disease processes play a role in the development of RIHD, the onset times of which range from months to decades. However, the clinical manifestations of RIHD are usually insidious, overlap with several other diseases, and lack specificity. Cardiovascular imaging is essential for early diagnosis, follow‐up, and outcome assessment in patients with RIHD. This review first describes the pathogenesis and clinical manifestations of RIHD before providing an overview of the practical approaches and research advances in multimodal cardiovascular imaging in patients with RIHD, including echocardiography, cardiac magnetic resonance (CMR) and nuclear medicine, and cardiac computed tomography (CT). Then, the value of new cardiac imaging assessments for the early diagnosis of RIHD is described, particularly with relation to speckle‐tracking echocardiography, extracellular volume fraction assessment as a quantitative CMR technique, CMR myocardial strain assessment, positron emission tomography‐CT myocardial perfusion imaging, CT‐ECV, and CT strain assessment, amongst others. In addition, the advantages and disadvantages of each screening technique are compared with the aim of better guiding the follow‐up and diagnosis of subclinical RIHD and preventing cardiovascular events.
Desai MY, Windecker S, Lancellotti P, Bax JJ, Griffin BP, Cahlon O, et al. Prevention, diagnosis, and management of radiation‐associated cardiac disease: JACC scientific expert panel. J Am Coll Cardiol. 2019;74(7):905–27. https://doi.org/10.1016/j.jacc.2019.07.006
Podlesnikar T, Berlot B, Dolenc J, Goričar K, Marinko T. Radiotherapy‐induced cardiotoxicity: the role of multimodality cardiovascular imaging. Front Cardiovasc Med. 2022;9:887705. https://doi.org/10.3389/fcvm.2022.887705
Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New insights into the understanding of mechanisms of radiation‐induced heart disease. Curr Treat Options Oncol. 2023;24(1):12–29. https://doi.org/10.1007/s11864-022-01041-4
Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation‐induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39. https://doi.org/10.3389/fonc.2015.00039
Lu LS, Wu YW, Chang JT, Chang WT, Chao TH, Chen HH, et al. Risk Management for Radiation‐Induced Cardiovascular Disease (RICVD): the 2022 Consensus Statement of the Taiwan Society for Therapeutic Radiology and Oncology (TASTRO) and Taiwan Society of Cardiology (TSOC). Acta Cardiol Sin. 2022;38(1):1–12. https://doi.org/10.6515/acs.202201_38(1).20211122a
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211
van Nimwegen FA, Schaapveld M, Janus CPM, Krol ADG, Petersen EJ, Raemaekers JMM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40‐year disease risk. JAMA Intern Med. 2015;175(6):1007–17. https://doi.org/10.1001/jamainternmed.2015.1180
Sun F, Franks K, Murray L, Lilley J, Wheller B, Banfill K, et al. Cardiovascular mortality and morbidity following radical radiotherapy for lung cancer: is cardiovascular death under‐reported? Lung Cancer. 2020;146:1–5. https://doi.org/10.1016/j.lungcan.2020.05.004
Darby SC, Ewertz M, McGale P, Bennet AM, Blom‐Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825
de Vries S, Haaksma ML, Jóźwiak K, Schaapveld M, Hodgson DC, Lugtenburg PJ, et al. Development and validation of risk prediction models for coronary heart disease and heart failure after treatment for hodgkin lymphoma. J Clin Oncol. 2023;41(1):86–95. https://doi.org/10.1200/jco.21.02613
Dalal S, Patel K, Hussein AM, Gattas B, Patel A, Dalal M, et al. Radiation therapy and associated cardiovascular outcomes in patients with Hodgkin’s lymphoma. J Clin Oncol. 2022;40:e19528. https://doi.org/10.1200/JCO.2022.40.16_suppl.e19528
Sun F, Banfill K, Lilley J, Wheller B, Murray L, McWilliam A, et al. Multi‐centre analysis of cardiac events following radical radiotherapy for lung cancer. Ann Oncol. 2019;30:27. https://doi.org/10.1093/annonc/mdz064.004
Mitchell JD, Cehic DA, Morgia M, Bergom C, Toohey J, Guerrero PA, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio‐oncology society. JACC CardioOncol. 2021;3(3):360–80. https://doi.org/10.1016/j.jaccao.2021.06.003
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. https://doi.org/10.1016/j.redox.2018.101084
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, et al. Oxidative stress in radiation‐induced cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143–3579215. https://doi.org/10.1155/2020/3579143
Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61. https://doi.org/10.1016/j.radonc.2010.09.002
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, et al. Radiation‐induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15(10):2128–38. https://doi.org/10.7150/ijbs.35460
Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation‐related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65. https://doi.org/10.1016/j.ijrobp.2009.09.064
Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, et al. Effects of ionizing radiation on the heart. Mutat Res Rev Mutat Res. 2016;770(Pt B):319–27. https://doi.org/10.1016/j.mrrev.2016.07.003
Luo L, Yan C, Fuchi N, Kodama Y, Zhang X, Shinji G, et al. Mesenchymal stem cell‐derived extracellular vesicles as probable triggers of radiation‐induced heart disease. Stem Cell Res Ther. 2021;12(1):422. https://doi.org/10.1186/s13287-021-02504-5
Mahdavi H. Radiation oncologists' perspectives on reducing radiation‐induced heart disease in early breast cancer. Curr Probl Cancer. 2020;44(2):100509. https://doi.org/10.1016/j.currproblcancer.2019.100509
Kirresh A, White L, Mitchell A, Ahmad S, Obika B, Davis S, et al. Radiation‐induced coronary artery disease: a difficult clinical conundrum. Clin Med. 2022;22(3):251–6. https://doi.org/10.7861/clinmed.2021-0600
Vordermark D, Pelz T. Coronary heart disease after mediastinal radiotherapy for Hodgkin lymphoma: can risk calculations from historic cohorts Be used today? J Clin Oncol. 2016;34(24):2939–40. https://doi.org/10.1200/jco.2015.65.8286
Groarke JD, Nguyen PL, Nohria A, Ferrari R, Cheng S, Moslehi J. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non‐invasive imaging for detection of cardiovascular disease. Eur Heart J. 2014;35(10):612–23. https://doi.org/10.1093/eurheartj/eht114
Fender EA, Liang JJ, Sio TT, Stulak JM, Lennon RJ, Slusser JP, et al. Percutaneous revascularization in patients treated with thoracic radiation for cancer. Am Heart J. 2017;187:98–103. https://doi.org/10.1016/j.ahj.2017.02.014
Quennelle S, Bonnet D. Pediatric heart failure with preserved ejection fraction, a review. Front Pediatr. 2023;11:1137853. https://doi.org/10.3389/fped.2023.1137853
Saiki H, Moulay G, Guenzel AJ, Liu W, Decklever TD, Classic KL, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313(2):H392–407. https://doi.org/10.1152/ajpheart.00124.2017
Lam WC, Pennell DJ. Imaging of the heart: historical perspective and recent advances. Postgrad Med J. 2016;92(1084):99–104. https://doi.org/10.1136/postgradmedj-2015-133831
Caudron J, Fares J, Bauer F, Dacher J‐N. Evaluation of left ventricular diastolic function with cardiac MR imaging. RadioGraphics. 2011;31(1):239–59. https://doi.org/10.1148/rg.311105049
Lancellotti P, Nkomo VT, Badano LP, Bergler J, Bogaert J, Davin L, et al. Expert consensus for multi‐modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(9):1013–32. https://doi.org/10.1016/j.echo.2013.07.005
Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42(4):743–9. https://doi.org/10.1016/s0735-1097(03)00759-9
Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez‐Mattei J, et al. Past, present, and future of radiation‐induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 2021;3(3):343–59. https://doi.org/10.1016/j.jaccao.2021.06.007
Demirkiran A, van Ooij P, Westenberg JJM, Hofman MBM, van Assen HC, Schoonmade LJ, et al. Clinical intra‐cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging. 2021;23(2):154–65. https://doi.org/10.1093/ehjci/jeab112
Chetrit M, Parent M, Klein AL. Multimodality imaging in pericardial diseases. Panminerva Med. 2021;63(3):301–13. https://doi.org/10.23736/s0031-0808.21.04270-1
Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28(8):1276–81. https://doi.org/10.1200/jco.2009.26.5751
Sharifkazemi M, Elahi M, Sayad M. Case report: early acute myocarditis after radiation therapy for breast cancer: a case presentation and review of literature. Front Cardiovasc Med. 2023;10:1020082. https://doi.org/10.3389/fcvm.2023.1020082
Thavendiranathan P, Shalmon T, Fan CPS, Houbois C, Amir E, Thevakumaran Y, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer. JAMA Cardiol. 2023;8(6):524–34. https://doi.org/10.1001/jamacardio.2023.0494
Heidenreich PA, Kapoor JR. Radiation induced heart disease: systemic disorders in heart disease. Heart. 2009;95(3):252–8. https://doi.org/10.1136/hrt.2008.149088
Zacchigna S, Paldino A, Falcão‐Pires I, Daskalopoulos EP, Dal Ferro M, Vodret S, et al. Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovasc Res. 2021;117(1):43–59. https://doi.org/10.1093/cvr/cvaa110
Locquet M, Spoor D, Crijns A, van der Harst P, Eraso A, Guedea F, et al. Subclinical left ventricular dysfunction detected by speckle‐tracking echocardiography in breast cancer patients treated with radiation therapy: a six‐month follow‐up analysis (medirad EARLY‐HEART study). Front Oncol. 2022;12:883679. https://doi.org/10.3389/fonc.2022.883679
Zhu D, Li T, Zhuang H, Cui M. Early detection of cardiac damage by two‐dimensional speckle tracking echocardiography after thoracic radiation therapy: study protocol for a prospective cohort study. Front Cardiovasc Med. 2021;8:735265. https://doi.org/10.3389/fcvm.2021.735265
Meng Y, Zhu S, Xie Y, Zhang Y, Qian M, Gao L, et al. Prognostic value of right ventricular 3D speckle‐tracking strain and ejection fraction in patients with HFpEF. Front Cardiovasc Med. 2021;8:694365. https://doi.org/10.3389/fcvm.2021.694365
Bu Zhibin HL, Kang J. Evaluation of early changes of early left ventricular dysfunction by three‐dimensional speckle tracking imaging in breast cancer patients undergoing radiotherapy after left breast conserving surgery. Cardio Cerebrovasc Dis Prev Treat. 2021;21(4):302–22.
Ryerson AB, Border WL, Wasilewski‐Masker K, Goodman M, Meacham L, Austin H, et al. Assessing anthracycline‐treated childhood cancer survivors with advanced stress echocardiography. Pediatr Blood Cancer. 2015;62(3):502–8. https://doi.org/10.1002/pbc.25328
Meimoun P, De Zuttere D, Kasongo A, Lardoux H. Dobutamine stress echocardiography‐induced Takotsubo cardiomyopathy. Which triggers? Eur Heart J. 2021;42(Suppl_1). https://doi.org/10.1093/eurheartj/ehab724.1175
Cai Q, Ahmad M. Left ventricular dyssynchrony by three‐dimensional echocardiography: current understanding and potential future clinical applications. Echocardiography. 2015;32(8):1299–306. https://doi.org/10.1111/echo.12965
Li W, Lv X, Liu J, Zeng J, Ye M, Li C, et al. Assessment of myocardial dysfunction by three‐dimensional echocardiography combined with myocardial contrast echocardiography in type 2 diabetes mellitus. Front Cardiovasc Med. 2021;8:677990. https://doi.org/10.3389/fcvm.2021.677990
Wolf CM, Reiner B, Kühn A, Hager A, Müller J, Meierhofer C, et al. Subclinical cardiac dysfunction in childhood cancer survivors on 10‐years follow‐up correlates with cumulative anthracycline dose and is best detected by cardiopulmonary exercise testing, circulating serum biomarker, speckle tracking echocardiography, and tissue Doppler imaging. Front Pediatr. 2020;8:123. https://doi.org/10.3389/fped.2020.00123
Shahidsales S, Anvari K, Javadinia SA, Ghaderi F, Gholamhosseinian H, Fanipakdel A, et al. Investigation of association between cardiac dose distribution and strain/tissue Doppler echocardiographic indices during 1‐year post‐mastectomy radiation therapy follow‐up in breast cancer patients. Indian J Gynecol Oncol. 2020;18(3):72. https://doi.org/10.1007/s40944-020-00424-5
Mor‐Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12(3):167–205. https://doi.org/10.1093/ejechocard/jer021
Fajardo LF, Stewart JR. Experimental radiation‐induced heart disease. Ⅰ. Light microscopic studies. Am J Pathol. 1970;59(2):299–316.
Tuohinen SS, Skyttä T, Virtanen V, Virtanen M, Luukkaala T, Kellokumpu‐Lehtinen PL, et al. Detection of radiotherapy‐induced myocardial changes by ultrasound tissue characterisation in patients with breast cancer. Int J Cardiovasc Imaging. 2016;32(5):767–76. https://doi.org/10.1007/s10554-016-0837-9
Danijela T, Jelena D, Olga P, Zorana VP. Assessment of coronary microcirculation with myocardial contrast echocardiography. Curr Pharm Des. 2018;24(25):2943–9. https://doi.org/10.2174/1381612824666180702115432
Pradhan J, Senior R. Assessment of myocardial viability by myocardial contrast echocardiography: current perspectives. Curr Opin Cardiol. 2019;34(5):495–501. https://doi.org/10.1097/hco.0000000000000650
Zhang J, Li X, Liu J, Shang Y, Tan L, Guo Y. Early and dynamic detection of doxorubicin induced cardiotoxicity by myocardial contrast echocardiography combined with two‐dimensional speckle tracking echocardiography in rats. Front Cardiovasc Med. 2022;9:1063499. https://doi.org/10.3389/fcvm.2022.1063499
Zhao L, Lu A, Tian J, Huang J, Ma X. Effects of different LVEF assessed by echocardiography and CMR on the diagnosis and therapeutic decisions of cardiovascular diseases. Front Physiol. 2020;11:679. https://doi.org/10.3389/fphys.2020.00679
Speers C, Murthy VL, Walker EM, Glide‐Hurst CK, Marsh R, Tang M, et al. Cardiac magnetic resonance imaging and blood biomarkers for evaluation of radiation‐induced cardiotoxicity in patients with breast cancer: results of a phase 2 clinical trial. Int J Radiat Oncol Biol Phys. 2022;112(2):417–25. https://doi.org/10.1016/j.ijrobp.2021.08.039
Sanchez Tijmes F, Thavendiranathan P, Udell JA, Seidman MA, Hanneman K. Cardiac MRI assessment of nonischemic myocardial inflammation: state of the art review and update on myocarditis associated with COVID‐19 vaccination. Radiol Cardiothorac Imaging. 2021;3(6):e210252. https://doi.org/10.1148/ryct.210252
Warnica W, Al‐Arnawoot A, Stanimirovic A, Thavendiranathan P, Wald RM, Pakkal M, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy. Radiology. 2022;305(2):319–26. https://doi.org/10.1148/radiol.220067
Ferreira VM, Schulz‐Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158–76. https://doi.org/10.1016/j.jacc.2018.09.072
Mukai‐Yatagai N, Haruki N, Kinugasa Y, Ohta Y, Ishibashi‐Ueda H, Akasaka T, et al. Assessment of myocardial fibrosis using T1‐mapping and extracellular volume measurement on cardiac magnetic resonance imaging for the diagnosis of radiation‐induced cardiomyopathy. J Cardiol Cases. 2018;18(4):132–5. https://doi.org/10.1016/j.jccase.2018.06.001
Tahir E, Azar M, Shihada S, Seiffert K, Goy Y, Beitzen‐Heineke A, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy‐related cardiac dysfunction in patients with breast cancer treated by epirubicin‐based chemotherapy or left‐sided RT. Eur Radiol. 2022;32(3):1853–65. https://doi.org/10.1007/s00330-021-08260-7
Tian Y, Wang T, Tian L, Yang Y, Xue C, Sheng W, et al. Early detection and serial monitoring during chemotherapy‐radiation therapy: using T1 and T2 mapping cardiac magnetic resonance imaging. Front Cardiovasc Med. 2023;10:1085737. https://doi.org/10.3389/fcvm.2023.1085737
Desai RR, Jha S. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta‐analysis. AJR Am J Roentgenol. 2013;201(2):W245–52. https://doi.org/10.2214/ajr.12.10002
Li M, Zhou T, Yang L, Peng Z, Ding J, Sun G. Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta‐analysis. JACC Cardiovasc Imaging. 2014;7(11):1098–105. https://doi.org/10.1016/j.jcmg.2014.07.011
Takx RA, Blomberg BA, Aidi HE, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta‐analysis. Circ Cardiovasc Imaging. 2015;8(1). https://doi.org/10.1161/circimaging.114.002666
Wassmuth R, Lentzsch S, Erdbruegger U, Schulz‐Menger J, Doerken B, Dietz R, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging‐a pilot study. Am Heart J. 2001;141(6):1007–13. https://doi.org/10.1067/mhj.2001.115436
Rodrigues JC, Lyen SM, Hamilton MC, Manghat NE. Re: MRI findings of radiation‐induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2015;70(6):676–7. https://doi.org/10.1016/j.crad.2014.12.014
Umezawa R, Ota H, Takanami K, Ichinose A, Matsushita H, Saito H, et al. MRI findings of radiation‐induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2014;69(12):1273–9. https://doi.org/10.1016/j.crad.2014.08.010
Messroghli DR, Moon JC, Ferreira VM, Grosse‐Wortmann L, He, T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75. https://doi.org/10.1186/s12968-017-0389-8
Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson. 2020;22(1):42. https://doi.org/10.1186/s12968-020-00636-w
Vaarpu M, Moisander M, Lehmonen L, Kivisto S, Skytta T, Kellokumpu‐Lehtinen PL, et al. Changes in left ventricular strain and cardiac biomarkers in a six‐year prospective follow‐up after breast cancer radiotherapy. Eur Heart J Cardiovasc Imaging. 2023;24(Suppl ment_1). https://doi.org/10.1093/ehjci/jead119.065
Gyenes G, Fornander T, Carlens P, Glas U, Rutqvist LE. Detection of radiation‐induced myocardial damage by technetium‐99m sestamibi scintigraphy. Eur J Nucl Med. 1997;24(3):286–92. https://doi.org/10.1007/bf01728765
Song J, Yan R, Wu Z, Li J, Yan M, Hao X, et al. 13)N‐Ammonia PET/CT detection of myocardial perfusion abnormalities in beagle dogs after local heart irradiation. J Nucl Med. 2017;58(4):605–10. https://doi.org/10.2967/jnumed.116.179697
Jingu K, Kaneta T, Nemoto K, Ichinose A, Oikawa M, Takai Y, et al. The utility of 18F‐fluorodeoxyglucose positron emission tomography for early diagnosis of radiation‐induced myocardial damage. Int J Radiat Oncol Biol Phys. 2006;66(3):845–51. https://doi.org/10.1016/j.ijrobp.2006.06.007
Evans JD, Gomez DR, Chang JY, Gladish GW, Erasmus JJ, Rebueno N, et al. Cardiac 18F‐fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol. 2013;109(1):82–8. https://doi.org/10.1016/j.radonc.2013.07.021
Zöphel K, Hölzel C, Dawel M, Hölscher T, Evers C, Kotzerke J. PET/CT demonstrates increased myocardial FDG uptake following irradiation therapy. Eur J Nucl Med Mol Imag. 2007;34(8):1322–3. https://doi.org/10.1007/s00259-007-0469-3
Yan R, Song J, Wu Z, Guo M, Liu J, Li J, et al. Detection of myocardial metabolic abnormalities by 18F‐FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation. Korean J Radiol. 2015;16(4):919–28. https://doi.org/10.3348/kjr.2015.16.4.919
Eber J, Leroy‐Freschini B, Antoni D, Noël G, Pflumio C. Increased cardiac uptake of ((18)F)‐fluorodeoxyglucose incidentally detected on positron emission tomography after left breast irradiation: how to interpret? Cancer Radiother. 2022;26(5):724–9. https://doi.org/10.1016/j.canrad.2021.10.010
Yan R, Li X, Song J, Guo M, Cai H, Wu Z, et al. Metabolic changes precede radiation‐induced cardiac remodeling in beagles: using noninvasive (18)F‐FDG ((18)F‐fludeoxyglucose) and (13)N‐ammonia positron emission tomography/computed tomography scans. J Am Heart Assoc. 2020;9(18):e016875. https://doi.org/10.1161/jaha.120.016875
Tzonevska A, Chakarova A, Tzvetkov K. GSPECT‐CT myocardial scintigraphy plus calcium scores as screening tool for prevention of cardiac side effects in leftsided breast cancer radiotherapy. J buon. 2014;19(3):667–72.
Wang SY, Lin KH, Wu YW, Yu CW, Yang SY, Shueng PW, et al. Evaluation of the cardiac subvolume dose and myocardial perfusion in left breast cancer patients with postoperative radiotherapy: a prospective study. Sci Rep. 2023;13(1):10578. https://doi.org/10.1038/s41598-023-37546-7
Takanami K, Arai A, Umezawa R, Takeuchi T, Kadoya N, Taki Y, et al. Association between radiation dose to the heart and myocardial fatty acid metabolic impairment due to chemoradiation‐therapy: prospective study using I‐123 BMIPP SPECT/CT. Radiother Oncol. 2016;119(1):77–83. https://doi.org/10.1016/j.radonc.2016.01.024
Norikane T, Yamamoto Y, Takami Y, Mitamura K, Arai‐Okuda H, Tani R, et al. Radiation‐induced myocardial damage indicated by focal defect on (123)I‐MIBG SPECT. Eur J Nucl Med Mol Imag. 2019;46(11):2404–5. https://doi.org/10.1007/s00259-019-04416-2
Sauter, AW, Wehrl, HF, Kolb, A, Judenhofer, MS, Pichler, BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med, 2010. 16(11): 508–15. https://doi.org/10.1016/j.molmed.2010.08.003
El‐Sherif, O, Xhaferllari, I, Sykes, J, Butler, J, Wisenberg, G, Prato, F, et al. TU‐G‐BRA‐08: BEST IN PHYSICS (JOINT IMAGING‐THERAPY): hybrid PET‐MRI imaging of acute radiation induced cardiac toxicity. Med Phys, 2015. 42(6): 3631–2. https://doi.org/10.1118/1.4925758
Arbab‐Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Diagnostic accuracy of computed tomography coronary angiography according to pre‐test probability of coronary artery disease and severity of coronary arterial calcification. The CORE‐64 (Coronary Artery Evaluation Using 64‐Row Multidetector Computed Tomography Angiography) International Multicenter Study. J Am Coll Cardiol. 2012;59(4):379–87. https://doi.org/10.1016/j.jacc.2011.06.079
Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296
Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia‐causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER‐FLOW (Diagnosis of Ischemia‐Causing Stenoses Obtained via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97. https://doi.org/10.1016/j.jacc.2011.06.066
Colleran R, Douglas PS, Hadamitzky M, Gutberlet M, Lehmkuhl L, Foldyna B, et al. An FFR(CT) diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one‐year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFR(CT): outcome and Resource Impacts) study. Open Heart. 2017;4(1):e000526. https://doi.org/10.1136/openhrt-2016-000526
Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1‐Year impact on medical practice and clinical outcomes of FFR(CT): the ADVANCE Registry. JACC Cardiovasc Imaging. 2020;13(1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003
Bernhard B, Grogg H, Zurkirchen J, Demirel C, Hagemeyer D, Okuno T, et al. Reproducibility of 4D cardiac computed tomography feature tracking myocardial strain and comparison against speckle‐tracking echocardiography in patients with severe aortic stenosis. J Cardiovasc Comput Tomogr. 2022;16(4):309–18. https://doi.org/10.1016/j.jcct.2022.01.003
Vach M, Vogelhuber J, Weber M, Sprinkart AM, Pieper CC, Block W, et al. Feasibility of CT‐derived myocardial strain measurement in patients with advanced cardiac valve disease. Sci Rep. 2021;11(1):8793. https://doi.org/10.1038/s41598-021-88294-5
Scully PR, Bastarrika G, Moon JC, Treibel TA. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr Cardiol Rep. 2018;20(3):15. https://doi.org/10.1007/s11886-018-0961-3
Liu P, Lin L, Xu C, Han Y, Lin X, Hou Y, et al. Quantitative analysis of late iodine enhancement using dual‐layer spectral detector computed tomography: comparison with magnetic resonance imaging. Quant Imaging Med Surg. 2022;12(1):310–20. https://doi.org/10.21037/qims-21-344
Zhang H, Guo H, Liu G, Wu C, Ma Y, Li S, et al. CT for the evaluation of myocardial extracellular volume with MRI as reference: a systematic review and meta‐analysis. Eur Radiol. 2023;33(12):8464–76. https://doi.org/10.1007/s00330-023-09872-x
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.