AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in multimodality imaging and the application of new cardiac imaging technologies for radiation‐induced heart disease

Zeliu Du1Chuanqiang Lan1Lin Shen2Zhifeng Tian1Hongfei Hu1Jie Mei1Ye Feng1Mengqian Zhai2Junchao Yu1Kan Liu3Jiansong Ji1,2( )Chenying Lu1,2 ( )
Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University (Lishui Municipal Central Hospital), Lishui, Zhejiang Province, China
Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University (Lishui Municipal Central Hospital), Lishui, Zhejiang Province, China
Division of Cardiology and Heart and Vascular Center, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA

Zeliu Du and Chuanqiang Lan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Radiation‐induced heart disease (RIHD) is a heterogeneous, delayed, and potentially fatal adverse reaction to radiation that can damage all structures of the heart, including the pericardium, myocardium, coronary arteries, valves, and conduction system, leading to a series of diseases. Acute and chronic disease processes play a role in the development of RIHD, the onset times of which range from months to decades. However, the clinical manifestations of RIHD are usually insidious, overlap with several other diseases, and lack specificity. Cardiovascular imaging is essential for early diagnosis, follow‐up, and outcome assessment in patients with RIHD. This review first describes the pathogenesis and clinical manifestations of RIHD before providing an overview of the practical approaches and research advances in multimodal cardiovascular imaging in patients with RIHD, including echocardiography, cardiac magnetic resonance (CMR) and nuclear medicine, and cardiac computed tomography (CT). Then, the value of new cardiac imaging assessments for the early diagnosis of RIHD is described, particularly with relation to speckle‐tracking echocardiography, extracellular volume fraction assessment as a quantitative CMR technique, CMR myocardial strain assessment, positron emission tomography‐CT myocardial perfusion imaging, CT‐ECV, and CT strain assessment, amongst others. In addition, the advantages and disadvantages of each screening technique are compared with the aim of better guiding the follow‐up and diagnosis of subclinical RIHD and preventing cardiovascular events.

References

[1]

Desai MY, Windecker S, Lancellotti P, Bax JJ, Griffin BP, Cahlon O, et al. Prevention, diagnosis, and management of radiation‐associated cardiac disease: JACC scientific expert panel. J Am Coll Cardiol. 2019;74(7):905–27. https://doi.org/10.1016/j.jacc.2019.07.006

[2]

Podlesnikar T, Berlot B, Dolenc J, Goričar K, Marinko T. Radiotherapy‐induced cardiotoxicity: the role of multimodality cardiovascular imaging. Front Cardiovasc Med. 2022;9:887705. https://doi.org/10.3389/fcvm.2022.887705

[3]

Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New insights into the understanding of mechanisms of radiation‐induced heart disease. Curr Treat Options Oncol. 2023;24(1):12–29. https://doi.org/10.1007/s11864-022-01041-4

[4]

Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation‐induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39. https://doi.org/10.3389/fonc.2015.00039

[5]

Lu LS, Wu YW, Chang JT, Chang WT, Chao TH, Chen HH, et al. Risk Management for Radiation‐Induced Cardiovascular Disease (RICVD): the 2022 Consensus Statement of the Taiwan Society for Therapeutic Radiology and Oncology (TASTRO) and Taiwan Society of Cardiology (TSOC). Acta Cardiol Sin. 2022;38(1):1–12. https://doi.org/10.6515/acs.202201_38(1).20211122a

[6]

Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211

[7]

van Nimwegen FA, Schaapveld M, Janus CPM, Krol ADG, Petersen EJ, Raemaekers JMM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40‐year disease risk. JAMA Intern Med. 2015;175(6):1007–17. https://doi.org/10.1001/jamainternmed.2015.1180

[8]

Sun F, Franks K, Murray L, Lilley J, Wheller B, Banfill K, et al. Cardiovascular mortality and morbidity following radical radiotherapy for lung cancer: is cardiovascular death under‐reported? Lung Cancer. 2020;146:1–5. https://doi.org/10.1016/j.lungcan.2020.05.004

[9]

Darby SC, Ewertz M, McGale P, Bennet AM, Blom‐Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825

[10]

de Vries S, Haaksma ML, Jóźwiak K, Schaapveld M, Hodgson DC, Lugtenburg PJ, et al. Development and validation of risk prediction models for coronary heart disease and heart failure after treatment for hodgkin lymphoma. J Clin Oncol. 2023;41(1):86–95. https://doi.org/10.1200/jco.21.02613

[11]

Dalal S, Patel K, Hussein AM, Gattas B, Patel A, Dalal M, et al. Radiation therapy and associated cardiovascular outcomes in patients with Hodgkin’s lymphoma. J Clin Oncol. 2022;40:e19528. https://doi.org/10.1200/JCO.2022.40.16_suppl.e19528

[12]

Sun F, Banfill K, Lilley J, Wheller B, Murray L, McWilliam A, et al. Multi‐centre analysis of cardiac events following radical radiotherapy for lung cancer. Ann Oncol. 2019;30:27. https://doi.org/10.1093/annonc/mdz064.004

[13]

Mitchell JD, Cehic DA, Morgia M, Bergom C, Toohey J, Guerrero PA, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio‐oncology society. JACC CardioOncol. 2021;3(3):360–80. https://doi.org/10.1016/j.jaccao.2021.06.003

[14]

Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. https://doi.org/10.1016/j.redox.2018.101084

[15]

Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, et al. Oxidative stress in radiation‐induced cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143–3579215. https://doi.org/10.1155/2020/3579143

[16]

Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61. https://doi.org/10.1016/j.radonc.2010.09.002

[17]

Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, et al. Radiation‐induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15(10):2128–38. https://doi.org/10.7150/ijbs.35460

[18]

Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation‐related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65. https://doi.org/10.1016/j.ijrobp.2009.09.064

[19]

Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, et al. Effects of ionizing radiation on the heart. Mutat Res Rev Mutat Res. 2016;770(Pt B):319–27. https://doi.org/10.1016/j.mrrev.2016.07.003

[20]

Luo L, Yan C, Fuchi N, Kodama Y, Zhang X, Shinji G, et al. Mesenchymal stem cell‐derived extracellular vesicles as probable triggers of radiation‐induced heart disease. Stem Cell Res Ther. 2021;12(1):422. https://doi.org/10.1186/s13287-021-02504-5

[21]

Mahdavi H. Radiation oncologists' perspectives on reducing radiation‐induced heart disease in early breast cancer. Curr Probl Cancer. 2020;44(2):100509. https://doi.org/10.1016/j.currproblcancer.2019.100509

[22]

Kirresh A, White L, Mitchell A, Ahmad S, Obika B, Davis S, et al. Radiation‐induced coronary artery disease: a difficult clinical conundrum. Clin Med. 2022;22(3):251–6. https://doi.org/10.7861/clinmed.2021-0600

[23]

Vordermark D, Pelz T. Coronary heart disease after mediastinal radiotherapy for Hodgkin lymphoma: can risk calculations from historic cohorts Be used today? J Clin Oncol. 2016;34(24):2939–40. https://doi.org/10.1200/jco.2015.65.8286

[24]

Groarke JD, Nguyen PL, Nohria A, Ferrari R, Cheng S, Moslehi J. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non‐invasive imaging for detection of cardiovascular disease. Eur Heart J. 2014;35(10):612–23. https://doi.org/10.1093/eurheartj/eht114

[25]

Fender EA, Liang JJ, Sio TT, Stulak JM, Lennon RJ, Slusser JP, et al. Percutaneous revascularization in patients treated with thoracic radiation for cancer. Am Heart J. 2017;187:98–103. https://doi.org/10.1016/j.ahj.2017.02.014

[26]

Quennelle S, Bonnet D. Pediatric heart failure with preserved ejection fraction, a review. Front Pediatr. 2023;11:1137853. https://doi.org/10.3389/fped.2023.1137853

[27]

Saiki H, Moulay G, Guenzel AJ, Liu W, Decklever TD, Classic KL, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313(2):H392–407. https://doi.org/10.1152/ajpheart.00124.2017

[28]

Lam WC, Pennell DJ. Imaging of the heart: historical perspective and recent advances. Postgrad Med J. 2016;92(1084):99–104. https://doi.org/10.1136/postgradmedj-2015-133831

[29]

Caudron J, Fares J, Bauer F, Dacher J‐N. Evaluation of left ventricular diastolic function with cardiac MR imaging. RadioGraphics. 2011;31(1):239–59. https://doi.org/10.1148/rg.311105049

[30]

Lancellotti P, Nkomo VT, Badano LP, Bergler J, Bogaert J, Davin L, et al. Expert consensus for multi‐modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(9):1013–32. https://doi.org/10.1016/j.echo.2013.07.005

[31]

Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42(4):743–9. https://doi.org/10.1016/s0735-1097(03)00759-9

[32]
Naimi Z, Bennour E, Neji H, Hamdoun A, Yahyaoui J, Hantous S, et al. Radiation dose distribution in cardiac valves in left‐sided breast cancer radiotherapy. Breast. 2021;56:S47–S48. ://WOS:000629363700107. https://doi.org/10.1016/s0960-9776(21)00162-4
[33]

Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez‐Mattei J, et al. Past, present, and future of radiation‐induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 2021;3(3):343–59. https://doi.org/10.1016/j.jaccao.2021.06.007

[34]

Demirkiran A, van Ooij P, Westenberg JJM, Hofman MBM, van Assen HC, Schoonmade LJ, et al. Clinical intra‐cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging. 2021;23(2):154–65. https://doi.org/10.1093/ehjci/jeab112

[35]

Chetrit M, Parent M, Klein AL. Multimodality imaging in pericardial diseases. Panminerva Med. 2021;63(3):301–13. https://doi.org/10.23736/s0031-0808.21.04270-1

[36]

Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28(8):1276–81. https://doi.org/10.1200/jco.2009.26.5751

[37]

Sharifkazemi M, Elahi M, Sayad M. Case report: early acute myocarditis after radiation therapy for breast cancer: a case presentation and review of literature. Front Cardiovasc Med. 2023;10:1020082. https://doi.org/10.3389/fcvm.2023.1020082

[38]

Thavendiranathan P, Shalmon T, Fan CPS, Houbois C, Amir E, Thevakumaran Y, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer. JAMA Cardiol. 2023;8(6):524–34. https://doi.org/10.1001/jamacardio.2023.0494

[39]

Heidenreich PA, Kapoor JR. Radiation induced heart disease: systemic disorders in heart disease. Heart. 2009;95(3):252–8. https://doi.org/10.1136/hrt.2008.149088

[40]
Errahmani MY, Thariat J, Ferrieres J, Bernier MO, Boveda S, Jacob S. Breast cancer radiotherapy and risk of pacemaker implantation: an epidemiologic analysis using the French nationwide claims database. Eur Heart J. 2021;42(Suppl_1):2845. ://WOS:000720456903146. https://doi.org/10.1093/eurheartj/ehab724.2845
[41]
Loap P, Fourquet A, Kirova Y. Evaluation of cardiac conduction system exposure with breast volumetric modulated arc therapy and intensity modulated proton therapy. Int J Radiat Oncol Biol Phys. 2021;111(3):E224. ://WOS:000715803800438. https://doi.org/10.1016/j.ijrobp.2021.07.773
[42]

Zacchigna S, Paldino A, Falcão‐Pires I, Daskalopoulos EP, Dal Ferro M, Vodret S, et al. Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovasc Res. 2021;117(1):43–59. https://doi.org/10.1093/cvr/cvaa110

[43]

Locquet M, Spoor D, Crijns A, van der Harst P, Eraso A, Guedea F, et al. Subclinical left ventricular dysfunction detected by speckle‐tracking echocardiography in breast cancer patients treated with radiation therapy: a six‐month follow‐up analysis (medirad EARLY‐HEART study). Front Oncol. 2022;12:883679. https://doi.org/10.3389/fonc.2022.883679

[44]

Zhu D, Li T, Zhuang H, Cui M. Early detection of cardiac damage by two‐dimensional speckle tracking echocardiography after thoracic radiation therapy: study protocol for a prospective cohort study. Front Cardiovasc Med. 2021;8:735265. https://doi.org/10.3389/fcvm.2021.735265

[45]

Meng Y, Zhu S, Xie Y, Zhang Y, Qian M, Gao L, et al. Prognostic value of right ventricular 3D speckle‐tracking strain and ejection fraction in patients with HFpEF. Front Cardiovasc Med. 2021;8:694365. https://doi.org/10.3389/fcvm.2021.694365

[46]

Bu Zhibin HL, Kang J. Evaluation of early changes of early left ventricular dysfunction by three‐dimensional speckle tracking imaging in breast cancer patients undergoing radiotherapy after left breast conserving surgery. Cardio Cerebrovasc Dis Prev Treat. 2021;21(4):302–22.

[47]

Ryerson AB, Border WL, Wasilewski‐Masker K, Goodman M, Meacham L, Austin H, et al. Assessing anthracycline‐treated childhood cancer survivors with advanced stress echocardiography. Pediatr Blood Cancer. 2015;62(3):502–8. https://doi.org/10.1002/pbc.25328

[48]

Meimoun P, De Zuttere D, Kasongo A, Lardoux H. Dobutamine stress echocardiography‐induced Takotsubo cardiomyopathy. Which triggers? Eur Heart J. 2021;42(Suppl_1). https://doi.org/10.1093/eurheartj/ehab724.1175

[49]

Cai Q, Ahmad M. Left ventricular dyssynchrony by three‐dimensional echocardiography: current understanding and potential future clinical applications. Echocardiography. 2015;32(8):1299–306. https://doi.org/10.1111/echo.12965

[50]

Li W, Lv X, Liu J, Zeng J, Ye M, Li C, et al. Assessment of myocardial dysfunction by three‐dimensional echocardiography combined with myocardial contrast echocardiography in type 2 diabetes mellitus. Front Cardiovasc Med. 2021;8:677990. https://doi.org/10.3389/fcvm.2021.677990

[51]

Wolf CM, Reiner B, Kühn A, Hager A, Müller J, Meierhofer C, et al. Subclinical cardiac dysfunction in childhood cancer survivors on 10‐years follow‐up correlates with cumulative anthracycline dose and is best detected by cardiopulmonary exercise testing, circulating serum biomarker, speckle tracking echocardiography, and tissue Doppler imaging. Front Pediatr. 2020;8:123. https://doi.org/10.3389/fped.2020.00123

[52]

Shahidsales S, Anvari K, Javadinia SA, Ghaderi F, Gholamhosseinian H, Fanipakdel A, et al. Investigation of association between cardiac dose distribution and strain/tissue Doppler echocardiographic indices during 1‐year post‐mastectomy radiation therapy follow‐up in breast cancer patients. Indian J Gynecol Oncol. 2020;18(3):72. https://doi.org/10.1007/s40944-020-00424-5

[53]

Mor‐Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12(3):167–205. https://doi.org/10.1093/ejechocard/jer021

[54]

Fajardo LF, Stewart JR. Experimental radiation‐induced heart disease. Ⅰ. Light microscopic studies. Am J Pathol. 1970;59(2):299–316.

[55]

Tuohinen SS, Skyttä T, Virtanen V, Virtanen M, Luukkaala T, Kellokumpu‐Lehtinen PL, et al. Detection of radiotherapy‐induced myocardial changes by ultrasound tissue characterisation in patients with breast cancer. Int J Cardiovasc Imaging. 2016;32(5):767–76. https://doi.org/10.1007/s10554-016-0837-9

[56]

Danijela T, Jelena D, Olga P, Zorana VP. Assessment of coronary microcirculation with myocardial contrast echocardiography. Curr Pharm Des. 2018;24(25):2943–9. https://doi.org/10.2174/1381612824666180702115432

[57]

Pradhan J, Senior R. Assessment of myocardial viability by myocardial contrast echocardiography: current perspectives. Curr Opin Cardiol. 2019;34(5):495–501. https://doi.org/10.1097/hco.0000000000000650

[58]

Zhang J, Li X, Liu J, Shang Y, Tan L, Guo Y. Early and dynamic detection of doxorubicin induced cardiotoxicity by myocardial contrast echocardiography combined with two‐dimensional speckle tracking echocardiography in rats. Front Cardiovasc Med. 2022;9:1063499. https://doi.org/10.3389/fcvm.2022.1063499

[59]

Zhao L, Lu A, Tian J, Huang J, Ma X. Effects of different LVEF assessed by echocardiography and CMR on the diagnosis and therapeutic decisions of cardiovascular diseases. Front Physiol. 2020;11:679. https://doi.org/10.3389/fphys.2020.00679

[60]

Speers C, Murthy VL, Walker EM, Glide‐Hurst CK, Marsh R, Tang M, et al. Cardiac magnetic resonance imaging and blood biomarkers for evaluation of radiation‐induced cardiotoxicity in patients with breast cancer: results of a phase 2 clinical trial. Int J Radiat Oncol Biol Phys. 2022;112(2):417–25. https://doi.org/10.1016/j.ijrobp.2021.08.039

[61]

Sanchez Tijmes F, Thavendiranathan P, Udell JA, Seidman MA, Hanneman K. Cardiac MRI assessment of nonischemic myocardial inflammation: state of the art review and update on myocarditis associated with COVID‐19 vaccination. Radiol Cardiothorac Imaging. 2021;3(6):e210252. https://doi.org/10.1148/ryct.210252

[62]

Warnica W, Al‐Arnawoot A, Stanimirovic A, Thavendiranathan P, Wald RM, Pakkal M, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy. Radiology. 2022;305(2):319–26. https://doi.org/10.1148/radiol.220067

[63]

Ferreira VM, Schulz‐Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158–76. https://doi.org/10.1016/j.jacc.2018.09.072

[64]

Mukai‐Yatagai N, Haruki N, Kinugasa Y, Ohta Y, Ishibashi‐Ueda H, Akasaka T, et al. Assessment of myocardial fibrosis using T1‐mapping and extracellular volume measurement on cardiac magnetic resonance imaging for the diagnosis of radiation‐induced cardiomyopathy. J Cardiol Cases. 2018;18(4):132–5. https://doi.org/10.1016/j.jccase.2018.06.001

[65]

Tahir E, Azar M, Shihada S, Seiffert K, Goy Y, Beitzen‐Heineke A, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy‐related cardiac dysfunction in patients with breast cancer treated by epirubicin‐based chemotherapy or left‐sided RT. Eur Radiol. 2022;32(3):1853–65. https://doi.org/10.1007/s00330-021-08260-7

[66]

Tian Y, Wang T, Tian L, Yang Y, Xue C, Sheng W, et al. Early detection and serial monitoring during chemotherapy‐radiation therapy: using T1 and T2 mapping cardiac magnetic resonance imaging. Front Cardiovasc Med. 2023;10:1085737. https://doi.org/10.3389/fcvm.2023.1085737

[67]

Desai RR, Jha S. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta‐analysis. AJR Am J Roentgenol. 2013;201(2):W245–52. https://doi.org/10.2214/ajr.12.10002

[68]

Li M, Zhou T, Yang L, Peng Z, Ding J, Sun G. Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta‐analysis. JACC Cardiovasc Imaging. 2014;7(11):1098–105. https://doi.org/10.1016/j.jcmg.2014.07.011

[69]

Takx RA, Blomberg BA, Aidi HE, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta‐analysis. Circ Cardiovasc Imaging. 2015;8(1). https://doi.org/10.1161/circimaging.114.002666

[70]

Wassmuth R, Lentzsch S, Erdbruegger U, Schulz‐Menger J, Doerken B, Dietz R, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging‐a pilot study. Am Heart J. 2001;141(6):1007–13. https://doi.org/10.1067/mhj.2001.115436

[71]

Rodrigues JC, Lyen SM, Hamilton MC, Manghat NE. Re: MRI findings of radiation‐induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2015;70(6):676–7. https://doi.org/10.1016/j.crad.2014.12.014

[72]

Umezawa R, Ota H, Takanami K, Ichinose A, Matsushita H, Saito H, et al. MRI findings of radiation‐induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2014;69(12):1273–9. https://doi.org/10.1016/j.crad.2014.08.010

[73]

Messroghli DR, Moon JC, Ferreira VM, Grosse‐Wortmann L, He, T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75. https://doi.org/10.1186/s12968-017-0389-8

[74]

Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson. 2020;22(1):42. https://doi.org/10.1186/s12968-020-00636-w

[75]

Vaarpu M, Moisander M, Lehmonen L, Kivisto S, Skytta T, Kellokumpu‐Lehtinen PL, et al. Changes in left ventricular strain and cardiac biomarkers in a six‐year prospective follow‐up after breast cancer radiotherapy. Eur Heart J Cardiovasc Imaging. 2023;24(Suppl ment_1). https://doi.org/10.1093/ehjci/jead119.065

[76]

Gyenes G, Fornander T, Carlens P, Glas U, Rutqvist LE. Detection of radiation‐induced myocardial damage by technetium‐99m sestamibi scintigraphy. Eur J Nucl Med. 1997;24(3):286–92. https://doi.org/10.1007/bf01728765

[77]

Song J, Yan R, Wu Z, Li J, Yan M, Hao X, et al. 13)N‐Ammonia PET/CT detection of myocardial perfusion abnormalities in beagle dogs after local heart irradiation. J Nucl Med. 2017;58(4):605–10. https://doi.org/10.2967/jnumed.116.179697

[78]

Jingu K, Kaneta T, Nemoto K, Ichinose A, Oikawa M, Takai Y, et al. The utility of 18F‐fluorodeoxyglucose positron emission tomography for early diagnosis of radiation‐induced myocardial damage. Int J Radiat Oncol Biol Phys. 2006;66(3):845–51. https://doi.org/10.1016/j.ijrobp.2006.06.007

[79]

Evans JD, Gomez DR, Chang JY, Gladish GW, Erasmus JJ, Rebueno N, et al. Cardiac 18F‐fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol. 2013;109(1):82–8. https://doi.org/10.1016/j.radonc.2013.07.021

[80]

Zöphel K, Hölzel C, Dawel M, Hölscher T, Evers C, Kotzerke J. PET/CT demonstrates increased myocardial FDG uptake following irradiation therapy. Eur J Nucl Med Mol Imag. 2007;34(8):1322–3. https://doi.org/10.1007/s00259-007-0469-3

[81]

Yan R, Song J, Wu Z, Guo M, Liu J, Li J, et al. Detection of myocardial metabolic abnormalities by 18F‐FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation. Korean J Radiol. 2015;16(4):919–28. https://doi.org/10.3348/kjr.2015.16.4.919

[82]

Eber J, Leroy‐Freschini B, Antoni D, Noël G, Pflumio C. Increased cardiac uptake of ((18)F)‐fluorodeoxyglucose incidentally detected on positron emission tomography after left breast irradiation: how to interpret? Cancer Radiother. 2022;26(5):724–9. https://doi.org/10.1016/j.canrad.2021.10.010

[83]

Yan R, Li X, Song J, Guo M, Cai H, Wu Z, et al. Metabolic changes precede radiation‐induced cardiac remodeling in beagles: using noninvasive (18)F‐FDG ((18)F‐fludeoxyglucose) and (13)N‐ammonia positron emission tomography/computed tomography scans. J Am Heart Assoc. 2020;9(18):e016875. https://doi.org/10.1161/jaha.120.016875

[84]

Tzonevska A, Chakarova A, Tzvetkov K. GSPECT‐CT myocardial scintigraphy plus calcium scores as screening tool for prevention of cardiac side effects in leftsided breast cancer radiotherapy. J buon. 2014;19(3):667–72.

[85]

Wang SY, Lin KH, Wu YW, Yu CW, Yang SY, Shueng PW, et al. Evaluation of the cardiac subvolume dose and myocardial perfusion in left breast cancer patients with postoperative radiotherapy: a prospective study. Sci Rep. 2023;13(1):10578. https://doi.org/10.1038/s41598-023-37546-7

[86]

Takanami K, Arai A, Umezawa R, Takeuchi T, Kadoya N, Taki Y, et al. Association between radiation dose to the heart and myocardial fatty acid metabolic impairment due to chemoradiation‐therapy: prospective study using I‐123 BMIPP SPECT/CT. Radiother Oncol. 2016;119(1):77–83. https://doi.org/10.1016/j.radonc.2016.01.024

[87]

Norikane T, Yamamoto Y, Takami Y, Mitamura K, Arai‐Okuda H, Tani R, et al. Radiation‐induced myocardial damage indicated by focal defect on (123)I‐MIBG SPECT. Eur J Nucl Med Mol Imag. 2019;46(11):2404–5. https://doi.org/10.1007/s00259-019-04416-2

[88]

Sauter, AW, Wehrl, HF, Kolb, A, Judenhofer, MS, Pichler, BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med, 2010. 16(11): 508–15. https://doi.org/10.1016/j.molmed.2010.08.003

[89]

El‐Sherif, O, Xhaferllari, I, Sykes, J, Butler, J, Wisenberg, G, Prato, F, et al. TU‐G‐BRA‐08: BEST IN PHYSICS (JOINT IMAGING‐THERAPY): hybrid PET‐MRI imaging of acute radiation induced cardiac toxicity. Med Phys, 2015. 42(6): 3631–2. https://doi.org/10.1118/1.4925758

[90]

Arbab‐Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Diagnostic accuracy of computed tomography coronary angiography according to pre‐test probability of coronary artery disease and severity of coronary arterial calcification. The CORE‐64 (Coronary Artery Evaluation Using 64‐Row Multidetector Computed Tomography Angiography) International Multicenter Study. J Am Coll Cardiol. 2012;59(4):379–87. https://doi.org/10.1016/j.jacc.2011.06.079

[91]

Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296

[92]

Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia‐causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER‐FLOW (Diagnosis of Ischemia‐Causing Stenoses Obtained via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97. https://doi.org/10.1016/j.jacc.2011.06.066

[93]

Colleran R, Douglas PS, Hadamitzky M, Gutberlet M, Lehmkuhl L, Foldyna B, et al. An FFR(CT) diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one‐year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFR(CT): outcome and Resource Impacts) study. Open Heart. 2017;4(1):e000526. https://doi.org/10.1136/openhrt-2016-000526

[94]

Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1‐Year impact on medical practice and clinical outcomes of FFR(CT): the ADVANCE Registry. JACC Cardiovasc Imaging. 2020;13(1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003

[95]

Bernhard B, Grogg H, Zurkirchen J, Demirel C, Hagemeyer D, Okuno T, et al. Reproducibility of 4D cardiac computed tomography feature tracking myocardial strain and comparison against speckle‐tracking echocardiography in patients with severe aortic stenosis. J Cardiovasc Comput Tomogr. 2022;16(4):309–18. https://doi.org/10.1016/j.jcct.2022.01.003

[96]

Vach M, Vogelhuber J, Weber M, Sprinkart AM, Pieper CC, Block W, et al. Feasibility of CT‐derived myocardial strain measurement in patients with advanced cardiac valve disease. Sci Rep. 2021;11(1):8793. https://doi.org/10.1038/s41598-021-88294-5

[97]

Scully PR, Bastarrika G, Moon JC, Treibel TA. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr Cardiol Rep. 2018;20(3):15. https://doi.org/10.1007/s11886-018-0961-3

[98]

Liu P, Lin L, Xu C, Han Y, Lin X, Hou Y, et al. Quantitative analysis of late iodine enhancement using dual‐layer spectral detector computed tomography: comparison with magnetic resonance imaging. Quant Imaging Med Surg. 2022;12(1):310–20. https://doi.org/10.21037/qims-21-344

[99]

Zhang H, Guo H, Liu G, Wu C, Ma Y, Li S, et al. CT for the evaluation of myocardial extracellular volume with MRI as reference: a systematic review and meta‐analysis. Eur Radiol. 2023;33(12):8464–76. https://doi.org/10.1007/s00330-023-09872-x

iRADIOLOGY
Pages 285-304
Cite this article:
Du Z, Lan C, Shen L, et al. Advances in multimodality imaging and the application of new cardiac imaging technologies for radiation‐induced heart disease. iRADIOLOGY, 2024, 2(3): 285-304. https://doi.org/10.1002/ird3.72

189

Views

3

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 06 November 2023
Accepted: 23 January 2024
Published: 05 April 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return