AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Extracellular vesicles: A new frontier in the theranostics of cardiovascular diseases

Enze Fu1,2Zongjin Li1,2,3,4 ( )
School of Medicine, Nankai University, Tianjin, China
Nankai University Eye Institute, Tianjin, China
Henan Key Laboratory of Cardiac Remodeling and Transplantation, Seventh People's Hospital, Zhengzhou, Henan, China
National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
Show Author Information

Graphical Abstract

Abstract

Extracellular vesicles (EVs) are tiny vesicles released by various cells that contain a variety of proteins, lipids, and nucleic acids, which can have a wide range of effects on other cells. The dynamic composition and contents of EVs can serve as sensitive biomarkers for diagnosing and monitoring various cardiovascular diseases (CVDs). In addition to their diagnostic potential, EVs are therapeutic agents capable of precise modulation and amelioration of CVDs, because of their innate ability to encapsulate and deliver bioactive molecules. This growing field reveals the intricate interplay between EVs and cardiovascular pathophysiology, showing that EVs can act as messengers of intercellular communication for CVD regenerative therapy. Extracellular vesicles serve as dual agents in the field of theranostics, both as diagnostic biomarkers able to decode nuanced molecular signatures of CVDs and as potent vehicles for targeted therapeutic interventions. This review delves into the evolving landscape of EVs, uncovering their diagnostic and therapeutic prospects and emphasizing their growing importance in shaping the future of cardiovascular theranostics.

References

[1]

Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667–81. https://doi.org/10.1016/j.tcb.2023.01.002

[2]

Li RR, Wang C, Zhou MQ, Liu Y, Chen S, Chai Z, et al. Heparan sulfate proteoglycan‐mediated internalization of extracellular vesicles ameliorates liver fibrosis by targeting hepatic stellate cells. Extracell Vesicle. 2022;1:100018. https://doi.org/10.1016/j.vesic.2022.100018

[3]

Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther. 2023;31(5):1231–50. https://doi.org/10.1016/j.ymthe.2023.02.013

[4]

Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell‐derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):63. https://doi.org/10.1186/s13287-018-0791-7

[5]

Jia YW, Yu L, Ma TL, Xu W, Qian H, Sun Y, et al. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics. 2022;12(15):6548–75. https://doi.org/10.7150/thno.74305

[6]

Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178:113961. https://doi.org/10.1016/j.addr.2021.113961

[7]

Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context‐specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol. 2023;24(7):454–76. https://doi.org/10.1038/s41580-023-00576-0

[8]

Busatto S, Morad G, Guo P, Moses MA. The role of extracellular vesicles in the physiological and pathological regulation of the blood‐brain barrier. FASEB Bioadv. 2021;3(9):665–75. https://doi.org/10.1096/fba.2021-00045

[9]

Rigalli JP, Barros ER, Sommers V, Bindels RJM, Hoenderop JGJ. Novel aspects of extracellular vesicles in the regulation of renal physiological and pathophysiological processes. Front Cell Dev Biol. 2020;8:244. https://doi.org/10.3389/fcell.2020.00244

[10]

Gustafson D, Veitch S, Fish JE. Extracellular vesicles as protagonists of diabetic cardiovascular pathology. Front Cardiovasc Med. 2017;4:71. https://doi.org/10.3389/fcvm.2017.00071

[11]

Femminò S, Penna C, Margarita S, Comità S, Brizzi MF, Pagliaro P. Extracellular vesicles and cardiovascular system: biomarkers and cardioprotective effectors. Vascul Pharmacol. 2020;135:106790. https://doi.org/10.1016/j.vph.2020.106790

[12]

Hezam K, Wang C, Fu EZ, Zhou M, Liu Y, Wang H, et al. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS‐induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther. 2023;14(1):48. https://doi.org/10.1186/s13287-023-03277-9

[13]

Zhang KY, Li RR, Chen XN, Yan H, Li H, Zhao X, et al. Renal endothelial cell‐targeted extracellular vesicles protect the kidney from ischemic injury. Adv Sci. 2023;10(3):e2204626. https://doi.org/10.1002/advs.202204626

[14]

Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med. 2019;29(6):313–23. https://doi.org/10.1016/j.tcm.2018.10.010

[15]

Hao T, Ji GB, Qian M, Li QX, Huang H, Deng S, et al. Intracellular delivery of nitric oxide enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Sci Adv. 2023;9(48):eadi9967. https://doi.org/10.1126/sciadv.adi9967

[16]

Du W, Tao HY, Zhao SH, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie. 2015;116:43–51. https://doi.org/10.1016/j.biochi.2015.06.021

[17]

Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855

[18]

Burkova EE, Sedykh SE, Nevinsky GA. Human placenta exosomes: biogenesis, isolation, composition, and prospects for use in diagnostics. Int J Mol Sci. 2021;22(4):2158. https://doi.org/10.3390/ijms22042158

[19]

Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus‐like vesicles, and apoptotic bodies. J Neuro Oncol. 2013;113(1):1–11. https://doi.org/10.1007/s11060-013-1084-8

[20]

Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res. 2023;119(1):45–63. https://doi.org/10.1093/cvr/cvac031

[21]

da Costa VR, Araldi RP, Vigerelli H, D'Ámelio F, Mendes TB, Gonzaga V, et al. Exosomes in the tumor microenvironment: from biology to clinical applications. Cells. 2021;10(10):2617. https://doi.org/10.3390/cells10102617

[22]

Han CS, Yang JJ, Sun JC, Qin G. Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications. Pharmacol Ther. 2022;233:108025. https://doi.org/10.1016/j.pharmthera.2021.108025

[23]

Eichner‐Seitz N. Diagnosis of extracellular vesicles in cardiovascular and metabolic diseases. Adv Exp Med Biol. 2023;1418:171–85. https://doi.org/10.1007/978-981-99-1443-2_12

[24]

Xiao X, Xu MQ, Yu HL, Wang L, Li X, Rak J, et al. Mesenchymal stem cell‐derived small extracellular vesicles mitigate oxidative stress‐induced senescence in endothelial cells via regulation of miR‐146a/Src. Signal Transduct Target Ther. 2021;6(1):354. https://doi.org/10.1038/s41392-021-00765-3

[25]

Gan L, Liu DM, Liu J, Chen E, Chen C, Liu L, et al. CD38 deficiency alleviates Ang Ⅱ‐induced vascular remodeling by inhibiting small extracellular vesicle‐mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6(1):223. https://doi.org/10.1038/s41392-021-00625-0

[26]

Giró O, Jiménez A, Pané A, Badimon L, Ortega E, Chiva‐Blanch G. Extracellular vesicles in atherothrombosis and cardiovascular disease: friends and foes. Atherosclerosis. 2021;330:61–75. https://doi.org/10.1016/j.atherosclerosis.2021.07.002

[27]

Hutcheson JD, Aikawa E. Extracellular vesicles in cardiovascular homeostasis and disease. Curr Opin Cardiol. 2018;33(3):290–7. https://doi.org/10.1097/HCO.0000000000000510

[28]

Liu H, Liu SY, Qiu XY, Yang X, Bao L, Pu F, et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy. 2020;16(12):2140–55. https://doi.org/10.1080/15548627.2020.1717128

[29]

Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. https://doi.org/10.1016/j.celrep.2020.107881

[30]

Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR. Mass‐spectrometry‐based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res. 2015;14(6):2367–84. https://doi.org/10.1021/pr501279t

[31]

Rosa‐Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A perspective on extracellular vesicles proteomics. Front Chem. 2017;5:102. https://doi.org/10.3389/fchem.2017.00102

[32]

de Hoog VC, Timmers L, Schoneveld AH, Wang JW, van de Weg SM, Sze SK, et al. Serum extracellular vesicle protein levels are associated with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2013;2(1):53–60. https://doi.org/10.1177/2048872612471212

[33]

Kanhai DA, Visseren FLJ, van der Graaf Y, Schoneveld AH, Catanzariti LM, Timmers L, et al. Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int J Cardiol. 2013;168(3):2358–63. https://doi.org/10.1016/j.ijcard.2013.01.231

[34]

Lopez JP, Nouri MZ, Ebrahim A, Chacko KM, Schramm WC, Gholam MF, et al. Lipid profiles of urinary extracellular vesicles released during the inactive and active phases of aged male mice with spontaneous hypertension. Int J Mol Sci. 2022;23(23):15397. https://doi.org/10.3390/ijms232315397

[35]

Chacko KM, Nouri MZ, Schramm WC, Malik Z, Liu LP, Denslow ND, et al. Tempol alters urinary extracellular vesicle lipid content and release while reducing blood pressure during the development of salt‐sensitive hypertension. Biomolecules. 2021;11(12):1804. https://doi.org/10.3390/biom11121804

[36]

Jung AL, Møller Jørgensen M, Bæk R, Artho M, Griss K, Han M, et al. Surface proteome of plasma extracellular vesicles as mechanistic and clinical biomarkers for malaria. Infection. 2023;51(5):1491–501. https://doi.org/10.1007/s15010-023-02022-x

[37]

Wang L, Liu J, Xu B, Liu Y, Liu Z. Reduced exosome miR‐425 and miR‐744 in the plasma represents the progression of fibrosis and heart failure. Kaohsiung J Med Sci. 2018;34(11):626–33. https://doi.org/10.1016/j.kjms.2018.05.008

[38]

Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, et al. Circulating p53‐responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322–6. https://doi.org/10.1161/CIRCRESAHA.113.301209

[39]

Chen ZZ, Yan YY, Wu JD, Qi C, Liu J, Wang J. Expression level and diagnostic value of exosomal NEAT1/miR‐204/MMP‐9 in acute ST‐segment elevation myocardial infarction. IUBMB Life. 2020;72(11):2499–507. https://doi.org/10.1002/iub.2376

[40]

Zheng ML, Liu XY, Han RJ, Yuan W, Sun K, Zhong J, et al. Circulating exosomal long non‐coding RNAs in patients with acute myocardial infarction. J Cell Mol Med. 2020;24(16):9388–96. https://doi.org/10.1111/jcmm.15589

[41]

Bei YH, Das S, Rodosthenous RS, Holvoet P, Vanhaverbeke M, Monteiro MC, et al. Extracellular vesicles in cardiovascular theranostics. Theranostics. 2017;7(17):4168–82. https://doi.org/10.7150/thno.21274

[42]

Chong SY, Lee CK, Huang CY, Ou YH, Charles CJ, Richards AM, et al. Extracellular vesicles in cardiovascular diseases: alternative biomarker sources, therapeutic agents, and drug delivery carriers. Int J Mol Sci. 2019;20(13):3272. https://doi.org/10.3390/ijms20133272

[43]

Li CW, Pei F, Zhu XS, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem. 2012;45(10/11):727–32. https://doi.org/10.1016/j.clinbiochem.2012.04.013

[44]

Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One. 2012;7(4):e34653. https://doi.org/10.1371/journal.pone.0034653

[45]

Koosha F, Alimohammadi N, Rafeian‐Kopaei M. The exosomes: staring biomarkers and novel therapeutic strategies. Curr Pharm Des. 2021;27(35):3714–21. https://doi.org/10.2174/1381612827666210614102340

[46]

Zhou RH, Bozbas E, Allen‐Redpath K, Yaqoob P. Circulating extracellular vesicles are strongly associated with cardiovascular risk markers. Front Cardiovasc Med. 2022;9:907457. https://doi.org/10.3389/fcvm.2022.907457

[47]

Jansen F, Yang XY, Proebsting S, Hoelscher M, Przybilla D, Baumann K, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc. 2014;3(6):e001249. https://doi.org/10.1161/JAHA.114.001249

[48]

D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765–73. https://doi.org/10.1093/eurheartj/ehq167

[49]

Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA ‐ an ISEV position paper. J Extracell Vesicles. 2017;6(1):1286095. https://doi.org/10.1080/20013078.2017.1286095

[50]

Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, et al. EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–32. https://doi.org/10.1038/nmeth.4185

[51]

Sherman CD, Lodha S, Sahoo S. EV cargo sorting in therapeutic development for cardiovascular disease. Cells. 2021;10(6):1500. https://doi.org/10.3390/cells10061500

[52]

Burtenshaw D, Regan B, Owen K, Collins D, McEneaney D, Megson IL, et al. Exosomal composition, biogenesis and profiling using point‐of‐care diagnostics‐implications for cardiovascular disease. Front Cell Dev Biol. 2022;10:853451. https://doi.org/10.3389/fcell.2022.853451

[53]

Zhou SS, Hu T, Zhang F, Tang D, Li D, Cao J, et al. Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood. Anal Chem. 2020;92(1):1574–81. https://doi.org/10.1021/acs.analchem.9b04852

[54]

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. https://doi.org/10.3390/cells8070727

[55]

Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma ‐ contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles. 2022;11(5):e12213. https://doi.org/10.1002/jev2.12213

[56]

Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945. https://doi.org/10.3402/jev.v5.32945

[57]

Schöler D, Loosen SH, Wirtz TH, Brozat JF, dos Santos Ferreira Grani LA, Luedde T, et al. Low extracellular vesicle concentrations predict survival in patients with heart failure. Front Cardiovasc Med. 2023;10:1163525. https://doi.org/10.3389/fcvm.2023.1163525

[58]

Trino S, Lamorte D, Caivano A, De Luca L, Sgambato A, Laurenzana I. Clinical relevance of extracellular vesicles in hematological neoplasms: from liquid biopsy to cell biopsy. Leukemia. 2021;35(3):661–78. https://doi.org/10.1038/s41375-020-01104-1

[59]

Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, et al. Multi‐omics integrative approach of extracellular vesicles: a future challenging milestone. Proteomes. 2022;10(2):12. https://doi.org/10.3390/proteomes10020012

[60]

Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi‐omics data integration in extracellular vesicle biology‐Utopia or future reality? Int J Mol Sci. 2020;21(22):8550. https://doi.org/10.3390/ijms21228550

[61]

Lee TH, D'Asti E, Magnus N, Al‐Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris. Semin Immunopathol. 2011;33(5):455–67. https://doi.org/10.1007/s00281-011-0250-3

[62]

Jia G, Han Y, An YL, Ding Y, He C, Wang X, et al. NRP‐1 targeted and cargo‐loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–16. https://doi.org/10.1016/j.biomaterials.2018.06.029

[63]

Song Y, Zhang C, Zhang JX, Jiao Z, Dong N, Wang G, et al. Localized injection of miRNA‐21‐enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics. 2019;9(8):2346–60. https://doi.org/10.7150/thno.29945

[64]

Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103(4):530–41. https://doi.org/10.1093/cvr/cvu167

[65]

Xing Z, Zhao C, Wu SW, Yang D, Zhang C, Wei X, et al. Hydrogel loaded with VEGF/TFEB‐engineered extracellular vesicles for rescuing critical limb ischemia by a dual‐pathway activation strategy. Adv Healthc Mater. 2022;11(5):e2100334. https://doi.org/10.1002/adhm.202100334

[66]

Zha Y, Li YW, Lin TY, Chen J, Zhang S, Wang J. Progenitor cell‐derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397–409. https://doi.org/10.7150/thno.50741

[67]

Mao CY, Li DJ, Zhou E, Gao E, Zhang T, Sun S, et al. Extracellular vesicles from anoxia preconditioned mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury. Aging. 2021;13(4):6156–70. https://doi.org/10.18632/aging.202611

[68]

Liu HB, Zhang YM, Yuan J, Gao W, Zhong X, Yao K, et al. Dendritic cell‐derived exosomal miR‐494‐3p promotes angiogenesis following myocardial infarction. Int J Mol Med. 2021;47(1):315–25. https://doi.org/10.3892/ijmm.2020.4776

[69]

Wang C, Liu C, Shi JX, Li H, Jiang S, Zhao P, et al. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle‐miRNA. Cardiovasc Res. 2023;119(3):729–42. https://doi.org/10.1093/cvr/cvac140

[70]

Liu SJ, Chen J, Shi J, Zhou W, Wang L, Fang W, et al. M1‐like macrophage‐derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020;115(2):22. https://doi.org/10.1007/s00395-020-0781-7

[71]

Yuan W, Liang X, Liu YY, Wang H. Mechanism of miR‐378a‐3p enriched in M2 macrophage‐derived extracellular vesicles in cardiomyocyte pyroptosis after MI. Hypertens Res. 2022;45(4):650–64. https://doi.org/10.1038/s41440-022-00851-1

[72]

Zheng SY, Wang LS, Ma HY, Sun F, Wen F. MicroRNA‐129 overexpression in endothelial cell‐derived extracellular vesicle influences inflammatory response caused by myocardial ischemia/reperfusion injury. Cell Biol Int. 2021;45(8):1743–56. https://doi.org/10.1002/cbin.11614

[73]

Yadid M, Lind JU, Ardoña HAM, Sheehy SP, Dickinson LE, Eweje F, et al. Endothelial extracellular vesicles contain protective proteins and rescue ischemia‐reperfusion injury in a human heart‐on‐chip. Sci Transl Med. 2020;12(565):eaax8005. https://doi.org/10.1126/scitranslmed.aax8005

[74]

Liu BH, Lee BW, Nakanishi K, Villasante A, Williamson R, Metz J, et al. Cardiac recovery via extended cell‐free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng. 2018;2(5):293–303. https://doi.org/10.1038/s41551-018-0229-7

[75]

Tian CH, Hu GK, Gao L, Hackfort BT, Zucker IH. Extracellular vesicular microRNA‐27a* contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol. 2020;143:120–31. https://doi.org/10.1016/j.yjmcc.2020.04.032

[76]

Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast‐derived microRNA passenger strand‐enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136–46. https://doi.org/10.1172/JCI70577

[77]

Saint‐Pol J, Gosselet F, Duban‐Deweer S, Pottiez G, Karamanos Y. Targeting and crossing the blood‐brain barrier with extracellular vesicles. Cells. 2020;9(4):851. https://doi.org/10.3390/cells9040851

[78]

Ramos‐Zaldívar HM, Polakovicova I, Salas‐Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP, et al. Extracellular vesicles through the blood‐brain barrier: a review. Fluids Barriers CNS. 2022;19(1):60. https://doi.org/10.1186/s12987-022-00359-3

[79]

Kang JY, Mun D, Chun YM, Park D, Kim H, Yun N, et al. Engineered small extracellular vesicle‐mediated NOX4 siRNA delivery for targeted therapy of cardiac hypertrophy. J Extracell Vesicles. 2023;12(10):e12371. https://doi.org/10.1002/jev2.12371

[80]

Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci Rep. 2019;9(1):10041. https://doi.org/10.1038/s41598-019-46407-1

[81]

Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ, et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnol. 2018;16(1):61. https://doi.org/10.1186/s12951-018-0388-4

[82]

Shao LB, Zhang Y, Pan XB, Liu B, Liang C, Zhang Y, et al. Knockout of beta‐2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell‐induced immune rejection. Cell Mol Life Sci. 2020;77(5):937–52. https://doi.org/10.1007/s00018-019-03220-3

[83]

Wei ZL, Qiao SH, Zhao JX, Liu Y, Li Q, Wei Z, et al. miRNA‐181a over‐expression in mesenchymal stem cell‐derived exosomes influenced inflammatory response after myocardial ischemia‐reperfusion injury. Life Sci. 2019;232:116632. https://doi.org/10.1016/j.lfs.2019.116632

[84]

Ma J, Zhao YY, Sun L, Sun X, Zhao X, Sun X, et al. Exosomes derived from akt‐modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet‐derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9. https://doi.org/10.5966/sctm.2016-0038

[85]

Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56. https://doi.org/10.1016/j.addr.2016.02.006

[86]

Chitti SV, Nedeva C, Manickam R, Fonseka P, Mathivanan S. Extracellular vesicles as drug targets and delivery vehicles for cancer therapy. Pharmaceutics. 2022;14(12):2822. https://doi.org/10.3390/pharmaceutics14122822

[87]

Wang X, Chen YH, Zhao ZN, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium‐targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15):e008737. https://doi.org/10.1161/JAHA.118.008737

[88]

Jansen F, Li Q, Pfeifer A, Werner N. Endothelial‐ and immune cell‐derived extracellular vesicles in the regulation of cardiovascular health and disease. JACC Basic Transl Sci. 2017;2(6):790–807. https://doi.org/10.1016/j.jacbts.2017.08.004

[89]

Kang JY, Kim H, Mun D, Yun N, Joung B. Co‐delivery of curcumin and miRNA‐144‐3p using heart‐targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction. J Contr Release. 2021;331:62–73. https://doi.org/10.1016/j.jconrel.2021.01.018

[90]

Qiu C, Xia F, Zhang JZ, Shi Q, Meng Y, Wang C, et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research. 2023;6:0148. https://doi.org/10.34133/research.0148

[91]

Nakase I, Futaki S. Combined treatment with a pH‐sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 2015;5(1):10112. https://doi.org/10.1038/srep10112

[92]

Martinus RD, Goldsbury J. Endothelial TNF‐α induction by Hsp60 secreted from THP‐1 monocytes exposed to hyperglycaemic conditions. Cell Stress Chaperones. 2018;23(4):519–25. https://doi.org/10.1007/s12192-017-0858-x

[93]

He S, Wu C, Xiao J, Li D, Sun Z. Endothelial extracellular vesicles modulate the macrophage phenotype: potential implications in atherosclerosis. Scand J Immunol. 2018;87(4):e12648. https://doi.org/10.1111/sji.12648

[94]

Zhong X, Gao W, Wu RD, Liu H, Ge J. Dendritic cell exosome‐shuttled miRNA146a regulates exosome‐induced endothelial cell inflammation by inhibiting IRAK‐1: a feedback control mechanism. Mol Med Rep. 2019;20(6):5315–23. https://doi.org/10.3892/mmr.2019.10749

[95]

Park H, Huang X, Lu CM, Cairo MS, Zhou X. MicroRNA‐146a and microRNA‐146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 2015;290(5):2831–41. https://doi.org/10.1074/jbc.M114.591420

[96]

Konkoth A, Saraswat R, Dubrou C, Sabatier F, Leroyer AS, Lacroix R, et al. Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis. 2021;319:121–31. https://doi.org/10.1016/j.atherosclerosis.2020.11.006

[97]

Badimon L, Padro T, Arderiu G, Vilahur G, Borrell‐Pages M, Suades R. Extracellular vesicles in atherothrombosis: from biomarkers and precision medicine to therapeutic targets. Immunol Rev. 2022;312(1):6–19. https://doi.org/10.1111/imr.13127

[98]

Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJG, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56. https://doi.org/10.1038/ncb2441

[99]

Li QY, Huang ZY, Pang ZQ, Wang Q, Gao J, Chen J, et al. Targeted delivery of platelet membrane modified extracellular vesicles into atherosclerotic plaque to regress atherosclerosis. Chem Eng J. 2023;452:138992. https://doi.org/10.1016/j.cej.2022.138992

[100]

Wu GH, Zhang JF, Zhao QR, Zhuang W, Ding J, Zhang C, et al. Molecularly engineered macrophage‐derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem Int Ed Engl. 2020;59(10):4068–74. https://doi.org/10.1002/anie.201913700

[101]

Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA‐9 and microRNA‐126 expression levels in patients with essential hypertension: potential markers of target‐organ damage. J Am Soc Hypertens. 2014;8(6):368–75. https://doi.org/10.1016/j.jash.2014.03.324

[102]

Cengiz M, Yavuzer S, Kılıçkıran AB, Yürüyen M, Yavuzer H, Dikici SA, et al. Circulating miR‐21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens. 2015;37(8):643–9. https://doi.org/10.3109/10641963.2015.1036064

[103]

Zhang HG, Zhang QJ, Li BW, Li LH, Song XH, Xiong CM, et al. The circulating level of miR‐122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertens Res. 2020;43(6):511–7. https://doi.org/10.1038/s41440-020-0405-5

[104]

Feng R, Ullah M, Chen K, Ali Q, Lin Y, Sun Z. Stem cell‐derived extracellular vesicles mitigate ageing‐associated arterial stiffness and hypertension. J Extracell Vesicles. 2020;9(1):1783869. https://doi.org/10.1080/20013078.2020.1783869

[105]

Wang C, Xing CY, Li ZL, Liu Y, Li Q, Wang Y, et al. Bioinspired therapeutic platform based on extracellular vesicles for prevention of arterial wall remodeling in hypertension. Bioact Mater. 2022;8:494–504. https://doi.org/10.1016/j.bioactmat.2021.06.005

[106]

Cheng PP, Wang XT, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: a double‐edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol. 2023;14:1067992. https://doi.org/10.3389/fphar.2023.1067992

[107]

de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17(11):685–97. https://doi.org/10.1038/s41569-020-0389-5

[108]

Riaud M, Martinez MC, Montero‐Menei CN. Scaffolds and extracellular vesicles as a promising approach for cardiac regeneration after myocardial infarction. Pharmaceutics. 2020;12(12):1195. https://doi.org/10.3390/pharmaceutics12121195

[109]

Huang X, Zuo JH. Emerging roles of miR‐210 and other non‐coding RNAs in the hypoxic response. Acta Biochim Biophys Sin. 2014;46(3):220–32. https://doi.org/10.1093/abbs/gmt141

[110]

van Balkom BWM, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015;4(1):26760. https://doi.org/10.3402/jev.v4.26760

[111]

Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL‐10 expression and secretion. EMBO Mol Med. 2017;9(3):337–52. https://doi.org/10.15252/emmm.201606924

[112]

Youn SW, Li Y, Kim YM, Sudhahar V, Abdelsaid K, Kim H, et al. Modification of cardiac progenitor cell‐derived exosomes by miR‐322 provides protection against myocardial infarction through Nox2‐dependent angiogenesis. Antioxidants. 2019;8(1):18. https://doi.org/10.3390/antiox8010018

[113]

Yuan JP, Yang H, Liu CX, Shao L, Zhang H, Lu K, et al. Microneedle patch loaded with exosomes containing microRNA‐29b prevents cardiac fibrosis after myocardial infarction. Adv Healthc Mater. 2023;12(13):e2202959. https://doi.org/10.1002/adhm.202202959

[114]

Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular vesicles as therapeutic agents for cardiac fibrosis. Front Physiol. 2020;11:479. https://doi.org/10.3389/fphys.2020.00479

[115]

Lee JY, Chung J, Byun Y, Kim KH, An SH, Kwon K. Mesenchymal stem cell‐derived small extracellular vesicles protect cardiomyocytes from doxorubicin‐induced cardiomyopathy by upregulating survivin expression via the miR‐199a‐3p‐akt‐Sp1/p53 signaling pathway. Int J Mol Sci. 2021;22(13):7102. https://doi.org/10.3390/ijms22137102

[116]

Li HF, Huang HY, Chen XN, Chen S, Yu L, Wang C, et al. The delivery of hsa‐miR‐11401 by extracellular vesicles can relieve doxorubicin‐induced mesenchymal stem cell apoptosis. Stem Cell Res Ther. 2021;12(1):77. https://doi.org/10.1186/s13287-021-02156-5

[117]

Aimaletdinov AM, Gomzikova MO. Tracking of extracellular vesicles' biodistribution: new methods and approaches. Int J Mol Sci. 2022;23(19):11312. https://doi.org/10.3390/ijms231911312

[118]

Hwang DW, Choi H, Jang SC, Yoo MY, Park JY, Choi NE, et al. Noninvasive imaging of radiolabeled exosome‐mimetic nanovesicle using (99m)Tc‐HMPAO. Sci Rep. 2015;5(1):15636. https://doi.org/10.1038/srep15636

[119]

Galisova A, Zahradnik J, Allouche‐Arnon H, Morandi MI, Abou Karam P, Fisler M, et al. Genetically engineered MRI‐trackable extracellular vesicles as SARS‐CoV‐2 mimetics for mapping ACE2 binding in vivo. ACS Nano. 2022;16(8):12276–89. https://doi.org/10.1021/acsnano.2c03119

[120]

Santelices J, Ou M, Hui WW, Edelmann M, Maegawa G. Fluorescent labeling of small extracellular vesicles (EVs) isolated from conditioned media. Bio Protoc. 2022;12(12):e4447. https://doi.org/10.21769/BioProtoc.4447

[121]

Levy D, Do MA, Zhang JY, Brown A, Lu B. Orchestrating extracellular vesicle with dual reporters for imaging and capturing in mammalian cell culture. Front Mol Biosci. 2021;8:680580. https://doi.org/10.3389/fmolb.2021.680580

[122]

Dehghani M, Gaborski TR. Fluorescent labeling of extracellular vesicles. Methods Enzymol. 2020;645:15–42. https://doi.org/10.1016/bs.mie.2020.09.002

[123]

Banerjee A, Lino M, Jesus C, Ribeiro Q, Abrunhosa A, Ferreira L. Imaging platforms to dissect the in vivo communication, biodistribution and controlled release of extracellular vesicles. J Contr Release. 2023;360:549–63. https://doi.org/10.1016/j.jconrel.2023.06.039

[124]

Scott A, Sueiro Ballesteros L, Bradshaw M, Power A, Lorriman J, et al. In vivo characterization of endogenous cardiovascular extracellular vesicles in larval and adult zebrafish. Arterioscler Thromb Vasc Biol. 2021;41(9):2454–68. https://doi.org/10.1161/ATVBAHA.121.316539

[125]

Durak‐Kozica M, Baster Z, Kubat K, Stępień E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018;23(1):57. https://doi.org/10.1186/s11658-018-0123-z

[126]

Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, et al. In Vivo imaging reveals extracellular vesicle‐mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57. https://doi.org/10.1016/j.cell.2015.04.042

[127]

Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non‐invasive stem cell labeling and tracking. Theranostics. 2013;3(8):595–615. https://doi.org/10.7150/thno.5366

[128]

Zhuo ZW, Wang JH, Luo YJ, Zeng R, Zhang C, Zhou W, et al. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater. 2021;134:13–31. https://doi.org/10.1016/j.actbio.2021.07.027

[129]

Dabrowska S, Del Fattore A, Karnas E, Frontczak‐Baniewicz M, Kozlowska H, Muraca M, et al. Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. Int J Nanomed. 2018;13:1653–64. https://doi.org/10.2147/IJN.S159404

[130]

Huang CY, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, et al. Extracellular vesicles in cardiovascular disease. Adv Clin Chem. 2021;103:47–95. https://doi.org/10.1016/bs.acc.2020.08.006

[131]

Busato A, Bonafede R, Bontempi P, Scambi I, Schiaffino L, Benati D, et al. Labeling and magnetic resonance imaging of exosomes isolated from adipose stem cells. Curr Protoc Cell Biol. 2017;75(1):3.44.1–3.44.15. https://doi.org/10.1002/cpcb.23

[132]

Khan AA, de Rosales RTM. Radiolabelling of extracellular vesicles for PET and SPECT imaging. Nanotheranostics. 2021;5(3):256–74. https://doi.org/10.7150/ntno.51676

[133]

Hong CM, Gangadaran P, Oh JM, Rajendran RL, Gopal A, Zhu L, et al. Radioiodine labeling and in vivo trafficking of extracellular vesicles. Sci Rep. 2021;11(1):5041. https://doi.org/10.1038/s41598-021-84636-5

[134]

Almeida S, Santos L, Falcão A, Gomes C, Abrunhosa A. In vivo tracking of extracellular vesicles by nuclear imaging: advances in radiolabeling strategies. Int J Mol Sci. 2020;21(24):9443. https://doi.org/10.3390/ijms21249443

[135]

Arifin DR, Witwer KW, Bulte JWM. Non‐Invasive imaging of extracellular vesicles: Quo vaditis in vivo? J Extracell Vesicles. 2022;11(7):e12241. https://doi.org/10.1002/jev2.12241

[136]

Varga Z, Gyurkó I, Pálóczi K, Buzás EI, Horváth I, Hegedűs N, et al. Radiolabeling of extracellular vesicles with (99m)Tc for quantitative in vivo imaging studies. Cancer Biother Radiopharm. 2016;31(5):168–73. https://doi.org/10.1089/cbr.2016.2009

[137]

Lu CH, Chen YA, Ke CC, Chiu SJ, Chen CC, Hsieh YJ, et al. Preclinical characterization and in vivo imaging of (111)In‐labeled mesenchymal stem cell‐derived extracellular vesicles. Mol Imag Biol. 2021;23(3):361–71. https://doi.org/10.1007/s11307-020-01562-0

[138]

Gangadaran P, Li XJ, Lee HW, Oh JM, Kalimuthu S, Rajendran RL, et al. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor‐derived bioluminescent extracellular vesicles in mice. Oncotarget. 2017;8(66):109894–914. https://doi.org/10.18632/oncotarget.22493

[139]

Zhang KY, Chen S, Sun HM, Wang L, Li H, Zhao J, et al. In vivo two‐photon microscopy reveals the contribution of Sox9(+) cell to kidney regeneration in a mouse model with extracellular vesicle treatment. J Biol Chem. 2020;295(34):12203–13. https://doi.org/10.1074/jbc.RA120.012732

[140]

Zhang K, Li Z. Molecular imaging of therapeutic effect of mesenchymal stem cell‐derived exosomes for hindlimb ischemia treatment. Methods Mol Biol. 2020;2150:213–25. https://doi.org/10.1007/7651_2019_221

[141]

Zhang CY, Shang YN, Chen XN, Midgley AC, Wang Z, Zhu D, et al. Supramolecular nanofibers containing arginine‐Glycine‐aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano. 2020;14(9):12133–47. https://doi.org/10.1021/acsnano.0c05681

[142]

Zhang KY, Zhao XN, Chen XN, Wei Y, Du W, Wang Y, et al. Enhanced therapeutic effects of mesenchymal stem cell‐derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces. 2018;10(36):30081–91. https://doi.org/10.1021/acsami.8b08449

[143]

Wei YZ, Wu YF, Zhao RX, Zhang K, Midgley AC, Kong D, et al. MSC‐derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials. 2019;204:13–24. https://doi.org/10.1016/j.biomaterials.2019.01.049

[144]

Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next‐generation drug delivery platform. Nat Nanotechnol. 2021;16(7):748–59. https://doi.org/10.1038/s41565-021-00931-2

[145]

Harris DD, Sabe SA, Sabra M, Xu CM, Malhotra A, Broadwin M, et al. Intramyocardial injection of hypoxia‐conditioned extracellular vesicles modulates apoptotic signaling in chronically ischemic myocardium. JTCVS Open. 2023;15:220–8. https://doi.org/10.1016/j.xjon.2023.05.013

[146]

Zhao H, Chen XY, Hu GY, Li C, Guo L, Zhang L, et al. Small extracellular vesicles from brown adipose tissue mediate exercise cardioprotection. Circ Res. 2022;130(10):1490–506. https://doi.org/10.1161/CIRCRESAHA.121.320458

[147]

Scrimgeour LA, Potz BA, Aboul Gheit A, Liu Y, Shi G, Pfeiffer M, et al. Intravenous injection of extracellular vesicles to treat chronic myocardial ischemia. PLoS One. 2020;15(9):e0238879. https://doi.org/10.1371/journal.pone.0238879

[148]

Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, et al. Hypoxia‐elicited mesenchymal stem cell‐derived exosomes facilitates cardiac repair through miR‐125b‐mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–77. https://doi.org/10.7150/thno.28021

[149]

Dinh PUC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11(1):1064. https://doi.org/10.1038/s41467-020-14344-7

[150]

Zhao RJ, Wang LN, Wang T, Xian P, Wang H, Long Q. Inhalation of MSC‐EVs is a noninvasive strategy for ameliorating acute lung injury. J Contr Release. 2022;345:214–30. https://doi.org/10.1016/j.jconrel.2022.03.025

[151]

Huang AN, Liu Y, Qi X, Chen S, Huang H, Zhang J, et al. Intravenously transplanted mesenchymal stromal cells: a new endocrine reservoir for cardioprotection. Stem Cell Res Ther. 2022;13(1):253. https://doi.org/10.1186/s13287-022-02922-z

[152]

Smyth T, Kullberg M, Malik N, Smith‐Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified tumor‐derived exosomes. J Contr Release. 2015;199:145–55. https://doi.org/10.1016/j.jconrel.2014.12.013

[153]

Xie YM, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv. 2009;6(8):785–92. https://doi.org/10.1517/17425240903085128

[154]

Murali VP, Holmes CA. Biomaterial‐based extracellular vesicle delivery for therapeutic applications. Acta Biomater. 2021;124:88–107. https://doi.org/10.1016/j.actbio.2021.01.010

[155]

Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, et al. Exosome‐bearing hydrogels and cardiac tissue regeneration. Biomater Res. 2023;27(1):99. https://doi.org/10.1186/s40824-023-00433-3

[156]

Han CS, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920–33. https://doi.org/10.1039/c9bm00101h

[157]

Lai JL, Huang CB, Guo YX, Rao L. Engineered extracellular vesicles and their mimics in cardiovascular diseases. J Contr Release. 2022;347:27–43. https://doi.org/10.1016/j.jconrel.2022.04.046

[158]

Yamada Y, Kobayashi H, Iwasa M, Sumi S, Ushikoshi H, Aoyama T, et al. Postinfarct active cardiac‐targeted delivery of erythropoietin by liposomes with sialyl Lewis X repairs infarcted myocardium in rabbits. Am J Physiol Heart Circ Physiol. 2013;304(8):H1124–33. https://doi.org/10.1152/ajpheart.00707.2012

[159]

Tang JN, Shen DL, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8(1):13724. https://doi.org/10.1038/ncomms13724

[160]

Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci. 2018;25(1):91. https://doi.org/10.1186/s12929-018-0494-5

[161]

Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular vesicle‐based therapeutics: preclinical and clinical investigations. Pharmaceutics. 2020;12(12):1171. https://doi.org/10.3390/pharmaceutics12121171

[162]

Öztürk S, Elçin AE, Koca A, Elçin YM. Therapeutic applications of stem cells and extracellular vesicles in emergency care: futuristic perspectives. Stem Cell Rev Rep. 2021;17(2):390–410. https://doi.org/10.1007/s12015-020-10029-2

iRADIOLOGY
Pages 240-259
Cite this article:
Fu E, Li Z. Extracellular vesicles: A new frontier in the theranostics of cardiovascular diseases. iRADIOLOGY, 2024, 2(3): 240-259. https://doi.org/10.1002/ird3.77

76

Views

2

Downloads

0

Crossref

Altmetrics

Received: 01 February 2024
Accepted: 31 March 2024
Published: 23 May 2024
© 2024 The Author(s). Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Return