AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (754.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

A review of high‐speed optical imaging technology for the analysis of ultrasound contrast agents in an acoustic field

School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
Show Author Information

Graphical Abstract

Abstract

Stabilized microbubbles were commercialized over 30 years ago for use as contrast agents in ultrasound imaging. In recent years, interest in microbubble–acoustic interactions has expanded to applications not only in ultrasound imaging but also in drug and gene delivery. To understand the interaction of a microbubble and ultrasonic field, scientists optically observe the behavior of microbubbles during acoustic excitation. Because of the fast oscillations of microbubbles in ultrasound fields, the application of ultra‐high‐speed photography is required to capture bubble behavior. This manuscript reviews the approaches, challenges, and progress in high‐speed imaging systems utilized for microbubble analysis, focusing on innovations in camera technology.

References

[1]

Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Contr Release. 2006;114(1): 89–99. https://doi.org/10.1016/j.jconrel.2006.05.018

[2]

Klibanov AL. Microbubble Contrast agents: targeted ultrasound imaging and ultrasound‐assisted drug‐delivery applications. Invest Radiol. 2006;41(3): 354–62. https://doi.org/10.1097/01.rli.0000199292.88189.0f

[3]

Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004;3(6): 527–33. https://doi.org/10.1038/nrd1417

[4]

Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng. 2007;9(1): 415–47. https://doi.org/10.1146/annurev.bioeng.8.061505.095852

[5]

Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60(3): 324–30. https://doi.org/10.1016/j.ejrad.2006.06.022

[6]

Borden MA, Kruse D, Caskey C, Shukui Zhao, Dayton P, Ferrara K. Influence of lipid shell physicochemical properties on ultrasound‐induced microbubble destruction. IEEE Trans Ultrason Ferroelectrics Freq Control. 2005;52(11): 1992–2002. https://doi.org/10.1109/TUFFC.2005.1561668

[7]

Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed. 2003;42(28): 3218–35. https://doi.org/10.1002/anie.200200550

[8]

Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol. 2012;199(2): 292–9. https://doi.org/10.2214/ajr.12.8826

[9]
Pellow CT. Nonlinear nanobubble behaviour for vascular and extravascular applications. PhD dissertation. University of Toronto (Canada); 2021.
[10]

Keller MW, Glasheen W, Kaul S. Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J Am Soc Echocardiogr. 1989;2(1):48–52. https://doi.org/10.1016/S0894‐7317(89)80028‐8

[11]

Nanda NC. History of echocardiographic contrast agents. Clin Cardiol. 1997;20(S1):7–11. https://doi.org/10.1002/clc.4960201304

[12]

Takeuchi Y. Pulsed stroboscopic visualizer to synchronously monitor the microballoon under insonification. IEEE; 1998. p. 1645–9. https://doi.org/10.1109/ULTSYM.1998.765261

[13]

Dayton PA, Morgan K, Klibanov A, Brandenburger G, Ferrara K. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelectrics Freq Control. 1999;46(1):220–32. https://doi.org/10.1109/58.741536

[14]
Kuribayashi K, Kudo N, Natori M, Yamamoto K. A high‐magnification and high‐speed system for the observation of microbubbles under ultrasound exposure. In: 1999 IEEE ultrasonics symposium. 1999;2(2): 1755–8. https://doi.org/10.1109/ULTSYM.1999.849337
[15]

de Jong N, Frinking PJ, Bouakaz A, Goorden M, Schourmans T, Jingping X, et al. Optical imaging of contrast agent microbubbles in an ultrasound field with a 100‐MHz camera. Ultrasound Med Biol. 2000;26(3):487–92. https://doi.org/10.1016/S0301‐5629(99)00159‐3

[16]

Chomas JE, Dayton PA, May D, Allen J, Klibanov A, Ferrara K. Optical observation of contrast agent destruction. Appl Phys Lett. 2000;77(7):1056–8. https://doi.org/10.1063/1.1287519

[17]

Allen JS, May DJ, Ferrara KW. Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med Biol. 2002;28(6):805–16. https://doi.org/10.1016/S0301‐5629(02)00522‐7

[18]
May D, Dayton P, Chomas J, Allen J, Ferrara K. Ultrasound contrast agents used for localized drug delivery. In: 2000 IEEE ultrasonics symposium 2, vol 2; 2000. p. 1429–32. https://doi.org/10.1109/ULTSYM.2000.921591
[19]

Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid‐ and polymer‐shelled ultrasound microbubble contrast agents. Appl Phys Lett. 2004;84(4):631–3. https://doi.org/10.1063/1.1643544

[20]
Kudo N, Okada K, Yamamoto K. Study on an evaluation method of shell characteristics of ultrasound contrast agent using a high‐speed camera. In: 2003 IEEE symposium on ultrasonics 2, vol 2; 2003. p. 1507–10. https://doi.org/10.1109/ULTSYM.2003.1293192
[21]

Patel D, Dayton P, Gut J, Wisner E, Ferrara K. Optical and acoustical interrogation of submicron contrast agents. IEEE Trans Ultrason Ferroelectrics Freq Control. 2002;49(12):1641–51. https://doi.org/10.1109/TUFFC.2002.1159844

[22]

Postema M, Marmottant P, Lancee CT, Hilgenfeldt S, Jong N. Ultrasound‐induced microbubble coalescence. Ultrasound Med Biol. 2004;30(10):1337–44. https://doi.org/10.1016/j.ultrasmedbio.2004.08.008

[23]
Postema M, Bouakaz A, Chin CT, de Jong, N. Optically observed microbubble coalescence and collapse. In: 2002 IEEE ultrasonics symposium, 2002. Proceedings 2, vol 2; 2002. p. 1949–52. https://doi.org/10.1109/ULTSYM.2002.1192681
[24]
Prentice PA, Burns JM, McLean D, Cuschieri A, Sibbett W, Campbell PA. Ultra high speed observations of cavitation derived microjetting phenomena. In: 3rd IEEE/EMBS special topic conference on microtechnology in medicine and biology; 2005. p. 160–1. https://doi.org/10.1109/MMB.2005.1548413
[25]

Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nat Phys. 2005;1(2):107–10. https://doi.org/10.1038/nphys148

[26]

Zhao S, Ferrara KW, Dayton PA. Asymmetric oscillation of adherent targeted ultrasound contrast agents. Appl Phys Lett. 2005;87(13):134103. https://doi.org/10.1063/1.2061872

[27]

Sun Y, Zhao S, Dayton P, Ferrara K. Observation of contrast agent response to chirp insonation with a simultaneous optical‐acoustical system. IEEE Trans Ultrason Ferroelectrics Freq Control. 2006;53(6):1130–7. https://doi.org/10.1109/tuffc.2006.1642511

[28]

Zheng H, Dayton PA, Caskey C, Zhao S, Qin S, Ferrara KW. Ultrasound‐driven microbubble oscillation and translation within small phantom vessels. Ultrasound Med Biol. 2007;33(12):1978–87. https://doi.org/10.1016/j.ultrasmedbio.2007.06.007

[29]

Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am. 2002;112(5):2183–92. https://doi.org/10.1121/1.1509428

[30]

Wolfrum B, Mettin R, Kurz T, Lauterborn W. Observations of pressure‐wave‐excited contrast agent bubbles in the vicinity of cells. Appl Phys Lett. 2002;81(26):5060–2. https://doi.org/10.1063/1.1531225

[31]

Kudo N, Miyaoka T, Okada K, Yamamoto K, Niwa K. Study on mechanism of cell damage caused by microbubbles exposed to ultrasound. IEEE; 2002. p. 1383–6. https://doi.org/10.1109/ULTSYM.2002.1192553

[32]

Kudo N, Okada K, Yamamoto K. Sonoporation by single‐shot pulsed ultrasound with microbubbles adjacent to cells. Biophys J. 2009;96(12):4866–76. https://doi.org/10.1016/j.bpj.2009.02.072

[33]

Dayton PA, Chomas JE, Lum AF, Allen JS, Lindner JR, Simon SI, et al. Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. Biophys J. 2001;80(3):1547–56. https://doi.org/10.1016/S0006‐3495(01)76127‐9

[34]

de Jong N, Postema M, Bouakaz A, Chin CT. Simulations and measurements of optical images of insonified ultrasound contrast microbubbles. IEEE Trans Ultrason Ferroelectrics Freq Control. 2003;50(5):523–36. https://doi.org/10.1109/tuffc.2003.1201465

[35]

Sun Y, Kruse D, Dayton P, Ferrara K. High‐frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectrics Freq Control. 2005;52(11):1981–91. https://doi.org/10.1109/tuffc.2005.1561667

[36]

Chomas JE, Dayton PA, May DJ, Ferrara KW. Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt. 2001;6(2):141–50. https://doi.org/10.1117/1.1352752

[37]

Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am. 2002;112(5):2183–92. https://doi.org/10.1121/1.1509428

[38]

Kheirolomoom A, Dayton PA, Lum AFH, Little E, Paoli EE, Zheng H, et al. Acoustically‐active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Contr Release. 2007;118(3):275–84. https://doi.org/10.1016/j.jconrel.2006.12.015

[39]

Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW. Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am. 2007;122(2):1191–200. https://doi.org/10.1121/1.2747204

[40]

Chin CT, Lancée C, Borsboom J, Mastik F, Frijlink ME, de Jong N, et al. Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instrum. 2003;74(12):5026–34. https://doi.org/10.1063/1.1626013

[41]
de Jong N, Chin CT, Lancee CT, Borsboom J, Mastik F, Versluis M, et al. Brandaris 128: a rotating‐mirror digital camera with 128 frames at 25 Mfps. In: 25th International Congress on High‐Speed Photography and Photonics, vol 4948; 2003. p. 342–7. SPIE.
[42]

De Jong N, Emmer M, van Wamel A, Versluis M. Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput. 2009;47(8):861–73. https://doi.org/10.1007/s11517‐009‐0497‐1

[43]

Versluis M. High‐speed imaging in fluids. Exp Fluid. 2013;54(2):1–35. https://doi.org/10.1007/s00348‐013‐1458‐x

[44]

Postema M, van Wamel A, Lancee CT, de Jong N. Ultrasound‐induced encapsulated microbubble phenomena. Ultrasound Med Biol. 2004;30(6):827–40. https://doi.org/10.1016/j.ultrasmedbio.2004.02.010

[45]

Emmer M, van Wamel A, Goertz DE, de Jong N. The onset of microbubble vibration. Ultrasound Med Biol. 2007;33(6):941–9. https://doi.org/10.1016/j.ultrasmedbio.2006.11.004

[46]

de Jong N, Emmer M, Chin CT, Bouakaz A, Mastik F, Lohse D, et al. ‘Compression‐only’ behavior of phospholipid‐coated contrast bubbles. Ultrasound Med Biol. 2007;33(4):653–6. https://doi.org/10.1016/j.ultrasmedbio.2006.09.016

[47]

Dollet B, van der Meer SM, Garbin V, de Jong N, Lohse D, Versluis M. Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med Biol. 2008;34(9):1465–73. https://doi.org/10.1016/j.ultrasmedbio.2008.01.020

[48]

Sijl J, Dollet B, Overvelde M, Garbin V, Rozendal T, de Jong N, et al. Subharmonic behavior of phospholipid‐coated ultrasound contrast agent microbubbles. J Acoust Soc Am. 2010;128(5):3239–52. https://doi.org/10.1121/1.3493443

[49]

van Wamel A, Bouakaz A, Versluis M, de Jong N. Micromanipulation of endothelial cells: ultrasound‐microbubble‐cell interaction. Ultrasound Med Biol. 2004;30(9):1255–8. https://doi.org/10.1016/j.ultrasmedbio.2004.07.015

[50]

van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Contr Release. 2006;112(2):149–55. https://doi.org/10.1016/j.jconrel.2006.02.007

[51]

Ohl C‐D, Arora M, Ikink R, de Jong N, Versluis M, Delius M, et al. Sonoporation from jetting cavitation bubbles. Biophys J. 2006;91(11):4285–95. https://doi.org/10.1529/biophysj.105.075366

[52]

Postema M, Bouakaz A, ten Cate FJ, Schmitz G, de Jong N, van Wamel A. Nitric oxide delivery by ultrasonic cracking: some limitations. Ultrasonics. 2006;44(Supplement):e109–13. https://doi.org/10.1016/j.ultras.2006.06.003

[53]

van der Meer SM, Dollet B, Voormolen MM, Chin CT, Bouakaz A, de Jong N, et al. Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am. 2007;121(1):648–56. https://doi.org/10.1121/1.2390673

[54]

Vos HJ, Dollet B, Bosch J, Versluis M, de Jong N. Nonspherical vibrations of microbubbles in contact with a wall—a pilot study at low mechanical index. Ultrasound Med Biol. 2008;34(4):685–8. https://doi.org/10.1016/j.ultrasmedbio.2007.10.001

[55]

Marmottant P, Versluis M, de Jong N, Hilgenfeldt S, Lohse D. High‐speed imaging of an ultrasound‐driven bubble in contact with a wall: ‘Narcissus’ effect and resolved acoustic streaming. Exp Fluid. 2005;41(2):147–53. https://doi.org/10.1007/s00348‐005‐0080‐y

[56]

Novell A, Van Der Meer S, Versluis M, De Jong N, Bouakaz A. Contrast agent response to chirp reversal: simulations, optical observations, and acoustical verification. IEEE Trans Ultrason Ferroelectrics Freq Control. 2009;56(6):1199–206. https://doi.org/10.1109/tuffc.2009.1161

[57]

Borsboom JMG, Chin CT, Bouakaz A, Versluis M, de Jong N. Harmonic chirp imaging method for ultrasound contrast agent. IEEE Trans Ultrason Ferroelectrics Freq Control. 2005;52(2):241–9. https://doi.org/10.1109/tuffc.2005.1406550

[58]

Bouakaz A, Versluis M, de Jong N. High‐speed optical observations of contrast agent destruction. Ultrasound Med Biol. 2005;31(3):391–9. https://doi.org/10.1016/j.ultrasmedbio.2004.12.004

[59]

Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am. 2005;118(6):3499–505. https://doi.org/10.1121/1.2109427

[60]

Bouakaz A, Versluis M, Borsboom J, De Jong N. Radial modulation of microbubbles for ultrasound contrast imaging. IEEE Trans Ultrason Ferroelectrics Freq Control. 2007;54(11):2283–90. https://doi.org/10.1109/tuffc.2007.532

[61]

Emmer M, Vos H, Versluis M, Jong N. Radial modulation of single microbubbles. IEEE Trans Ultrason Ferroelectrics Freq Control. 2009;56(11):2370–9. https://doi.org/10.1109/tuffc.2009.1325

[62]

Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde MLJ, van der Meer SM, et al. Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high‐speed imaging. Appl Phys Lett. 2007;90(11):114103. https://doi.org/10.1063/1.2713164

[63]

Overvelde M, Garbin V, Dollet B, de Jong N, Lohse D, Versluis M. Dynamics of coated microbubbles adherent to a wall. Ultrasound Med Biol. 2011;37(9):1500–8. https://doi.org/10.1016/j.ultrasmedbio.2011.05.025

[64]

Chetty K, Sennoga CA, Hajnal JV, Eckersley RJ, Stride E. P1F‐4 high speed optical observations and simulation results of lipid based microbubbles at low insonation pressures. IEEE Ultrason Symp. 2006:1354–7.

[65]

Stride E, Tang M‐X, Eckersley RJ. Physical phenomena affecting quantitative imaging of ultrasound contrast agents. Appl Acoust. 2009;70(10):1352–62. https://doi.org/10.1016/j.apacoust.2008.10.003

[66]

Mulvana H, Stride E, Tang M, Hajnal JV, Eckersley R. Temperature‐dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high‐speed imaging and bulk acoustics. Ultrasound Med Biol. 2011;37(9):1509–17. https://doi.org/10.1016/j.ultrasmedbio.2011.05.020

[67]

Chen X, Leeman JE, Wang J, Pacella JJ, Villanueva FS. New insights into mechanisms of sonothrombolysis using ultra‐high‐speed imaging. Ultrasound Med Biol. 2014;40(1):258–62. https://doi.org/10.1016/j.ultrasmedbio.2013.08.021

[68]

Chen X, Wang J, Versluis M, de Jong N, Villanueva FS. Ultra‐fast bright field and fluorescence imaging of the dynamics of micrometer‐sized objects. Rev Sci Instrum. 2013;84(6):063701. https://doi.org/10.1063/1.4809168

[69]

Helfield B, Chen X, Qin B, Villanueva F. Ultrafast frame rate microscopy of microbubble oscillations: current studies employing the UPMC‐Cam. J Acoust Soc Am. 2015;137(4):2252. https://doi.org/10.1121/1.4920214

[70]

Chen X, Wang J, Pacella J, Villanueva FS. Microbubble behavior during long tone‐burst ultrasound excitation. J Acoust Soc Am. 2015;137(4):2253. https://doi.org/10.1121/1.4920220

[71]

Pillai R, Marinelli ER, Fan H, Nanjappan P, Song B, Von Wronski MA, et al. A Phospholipid − PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)‐targeting heterodimer peptide for contrast‐enhanced ultrasound imaging of angiogenesis. Bioconjugate Chem. 2010;21(3):556–62. https://doi.org/10.1021/bc9005688

[72]

Hu X, Kheirolomoom A, Mahakian LM, Beegle JR, Kruse DE, Lam KS, et al. Insonation of targeted microbubbles produces regions of reduced blood flow within tumor vasculature. Invest Radiol. 2012;47(7):398–405. https://doi.org/10.1097/rli.0b013e31824bd237

[73]

Christiansen JP, Leong‐Poi H, Klibanov AL, Kaul S, Lindner JR. Noninvasive imaging of myocardial reperfusion injury using leukocyte‐targeted contrast echocardiography. Circulation. 2002;105(15):1764–7. https://doi.org/10.1161/01.cir.0000015466.89771.e2

[74]

Yusefi H, Helfield B. Ultrasound contrast imaging: fundamentals and emerging technology. Front Phys. 2022;10:100. https://doi.org/10.3389/fphy.2022.791145

[75]

Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid‐coated microbubbles. Adv Drug Deliv Rev. 2004;56(9):1291–314. https://doi.org/10.1016/j.addr.2003.12.006

[76]

Garg S, Thomas AA, Borden MA. The effect of lipid monolayer in‐plane rigidity on in vivo microbubble circulation persistence. Biomaterials. 2013;34(28):6862–70. https://doi.org/10.1016/j.biomaterials.2013.05.053

[77]

Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, et al. Ultrafast ultrasound localization microscopy for deep super‐resolution vascular imaging. Nature. 2015;527(7579):499–502. https://doi.org/10.1038/nature16066

[78]

Desailly Y, Pierre J, Couture O, Tanter M. Resolution limits of ultrafast ultrasound localization microscopy. Phys Med Biol. 2015;60(22):8723–40. https://doi.org/10.1088/0031‐9155/60/22/8723

[79]

Zhang W, Lowerison MR, Dong Z, Miller RJ, Keller KA, Song P. Super‐resolution ultrasound localization microscopy on a rabbit liver VX2 tumor model: an initial feasibility study. Ultrasound Med Biol. 2021;47(8):2416–29. https://doi.org/10.1016/j.ultrasmedbio.2021.04.012

[80]

Muskula PR, Main ML. Safety with echocardiographic contrast agents. Circulation. 2017;10(4):e005459. https://doi.org/10.1161/circimaging.116.005459

[81]

Appis AW, Tracy MJ, Feinstein SB. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract. 2015;2(2):R55–62. https://doi.org/10.1530/erp‐15‐0018

[82]

Khumri TM, Main ML. Safety and risk–benefit profile of microbubble contrast agents in echocardiography. Asia Pac Cardiol. 2008;2(1):47–9. https://doi.org/10.15420/apc.2008:2:1:47

[83]

Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target. 2018;26(5‐6):420–34. https://doi.org/10.1080/1061186x.2017.1419362

[84]

Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med. 2021;6(1):e10183. https://doi.org/10.1002/btm2.10183

iRADIOLOGY
Pages 78-90
Cite this article:
Bellotti A. A review of high‐speed optical imaging technology for the analysis of ultrasound contrast agents in an acoustic field. iRADIOLOGY, 2023, 1(1): 78-90. https://doi.org/10.1002/ird3.8

446

Views

18

Downloads

4

Crossref

Altmetrics

Received: 26 January 2023
Accepted: 19 February 2023
Published: 22 March 2023
© 2023 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return