AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iRADIOLOGY Article
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Precise diagnosis of cardiac‐cerebral vascular diseases with magnetic resonance imaging‐based nanoprobes

Wenyue Li1,Ruru Zhang2,Xinyi Zhang1Shuai Wu1Tiancong Ma3Yi Hou1 ( )Jianfeng Zeng2( )Mingyuan Gao2( )
College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
Centre for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, and the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
Fischell Department of Bioengineering, University of Maryland, College Park, USA

Wenyue Li and Ruru Zhang authors contributed equally.

Show Author Information

Graphical Abstract

Abstract

Cardiac‐cerebral vascular diseases (CCVDs) are acknowledged as a major threat to public health, leading to more than one‐third of all deaths worldwide. The complex anatomical structure and immune features of blood vessels significantly affect the development of CCVDs, and magnetic resonance angiography (MRA) is one of the main diagnostic approaches for the accurate diagnosis and prognosis of CCVDs. However, MRA suffers from intrinsic problems derived from its blood flow‐dependency, and the clinical Gd‐chelating contrast agents are limited by their rapid vascular extravasation. Over the past decade, spurred on by nanoscience and nanotechnology, numerous contrast agents based on magnetic nanomaterials have been developed to enhance the contrast of MRA, with these including iron oxide nanoparticles, rare earth‐doped nanoparticles, and metal‐organic coordination polymers. The molecular MR imaging of vasculopathy using specific nanoprobes has been explored to obtain a better understanding of the molecular aspects of CCVDs. In this review, the state of the art in MRA nanoprobes is introduced, and recent achievements in the diagnosis of CCVDs using MR imaging are summarized. Additionally, the future prospects and limitations of MRA based on nanoprobes are discussed. The current review provides methodological designs and ideas for subsequent MRA nanoprobes.

References

[1]

Nabel EG. Cardiovascular disease. N Engl J Med. 2003;349(1):60–72. https://doi.org/10.1056/NEJMra035098

[2]

Wang YB, Zhang Y, Wang Z, Zhang J, Qiao RR, Xu M, et al. Optical/MRI dual‐modality imaging of M1 macrophage polarization in atherosclerotic plaque with MARCO‐targeted upconversion luminescence probe. Biomaterials. 2019;219:119378. https://doi.org/10.1016/j.biomaterials.2019.119378

[3]

Fang Y, Yang RC, Hou Y, Wang YB, Yang N, Xu MQ, et al. Dual‐modality imaging of angiogenesis in unstable atherosclerotic plaques with VEGFR2‐targeted upconversion nanoprobes in vivo. Mol Imag Biol. 2022;24(5):721–31. https://doi.org/10.1007/s11307-022-01721-5

[4]

Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, et al. Collaterals at angiography and outcomes in the interventional management of stroke (IMS) Ⅲ trial. Stroke. 2014;45(3):759–64. https://doi.org/10.1161/STROKEAHA.113.004072

[5]

Maas MB, Lev MH, Ay H, Singhal AB, Greer DM, Smith WS, et al. Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke. 2009;40(9):3001–5. https://doi.org/10.1161/STROKEAHA.109.552513

[6]

Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377(9775):1409–20. https://doi.org/10.1016/S0140-6736(11)60404-2

[7]

Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227(2):522–8. https://doi.org/10.1148/radiol.2272012071

[8]

Majoie CB, Sprengers ME, van Rooij WJ, Lavini C, Sluzewski M, van Rijn JC, et al. MR angiography at 3T versus digital subtraction angiography in the follow‐up of intracranial aneurysms treated with detachable coils. AJNR Am J Neuroradiol. 2005;26(6):1349–56.

[9]

Cohnen M, Wittsack HJ, Assadi S, Muskalla K, Ringelstein A, Poll LW, et al. Radiation exposure of patients in comprehensive computed tomography of the head in acute stroke. AJNR Am J Neuroradiol. 2006;27(8):1741–5.

[10]

Chen J, Einstein AJ, Fazel R, Krumholz HM, Wang Y, Ross JS, et al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population‐based analysis. J Am Coll Cardiol. 2010;56(9):702–11. https://doi.org/10.1016/j.jacc.2010.05.014

[11]

Rafailidis V, Huang DY, Yusuf GT, Sidhu PS. General principles and overview of vascular contrast‐enhanced ultrasonography. Ultrasonography. 2020;39(1):22–42. https://doi.org/10.14366/usg.19022

[12]

Golemati S, Cokkinos DD. Recent advances in vascular ultrasound imaging technology and their clinical implications. Ultrasonics. 2022;119:106599. https://doi.org/10.1016/j.ultras.2021.106599

[13]

Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet. 2017;390(10096):793–809. https://doi.org/10.1016/S0140-6736(17)31957-8

[14]

Young CC, Bonow RH, Barros G, Mossa‐Basha M, Kim LJ, Levitt MR. Magnetic resonance vessel wall imaging in cerebrovascular diseases. Neurosurg Focus. 2019;47(6):E4. https://doi.org/10.3171/2019.9.FOCUS19599

[15]

Shang H, Zhao X, Zhang X. Vascular diseases. Singapore: Springer; 2022.

[16]

Azarine A, Scalbert F, Garçon P. Cardiac functional imaging. Presse Med. 2022;51(2):104119. https://doi.org/10.1016/j.lpm.2022.104119

[17]

Hyodo R, Takehara Y, Naganawa S. 4D Flow MRI in the portal venous system: imaging and analysis methods, and clinical applications. Radiol Med. 2022;127(11):1181–98. https://doi.org/10.1007/s11547-022-01553-x

[18]

Soufi G, Hekmatnia A, Iravani S, Varma RS. Nanoscale contrast agents for magnetic resonance imaging: a review. ACS Appl Nano Mater. 2022;5(8):10151–66. https://doi.org/10.1021/acsanm.2c03297

[19]

Cai WB, Chen XY. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007;3(11):1840–54. https://doi.org/10.1002/smll.200700351

[20]

Arbeille P, Eder V, Casset D, Quillet L, Hudelo C, Herault S. Real‐time 3‐D ultrasound acquisition and display for cardiac volume and ejection fraction evaluation. Ultrasound Med Biol. 2000;26(2):201–8. https://doi.org/10.1016/s0301-5629(99)00125-8

[21]

Gaeta M, Cavallaro M, Vinci SL, Mormina E, Blandino A, Marino MA, et al. Magnetism of materials: theory and practice in magnetic resonance imaging. Insights Imag. 2021;12(1):179. https://doi.org/10.1186/s13244-021-01125-z

[22]

Yi Z, Luo Z, Barth ND, Meng X, Liu H, Bu W, et al. In vivo tumor visualization through MRI off‐on switching of NaGdF4‐CaCO3 nanoconjugates. Adv Mater. 2019;31(37):e1901851. https://doi.org/10.1002/adma.201901851

[23]

Zhang PS, Cheng JW, Lu YJ, Zhang N, Wu X, Lin H, et al. Hypersensitive MR angiography based on interlocking stratagem for diagnosis of cardiac‐cerebral vascular diseases. Nat Commun. 2023;14(1):6149. https://doi.org/10.1038/s41467-023-41783-9

[24]

Saxena SK, Sharma M, Patel M, Oreopoulos D. Nephrogenic systemic fibrosis: an emerging entity. Int Urol Nephrol. 2008;40(3):715–24. https://doi.org/10.1007/s11255-008-9361-8

[25]

Yu MX, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9(7):6655–74. https://doi.org/10.1021/acsnano.5b01320

[26]

Xu L, Ren ZY, Li GL, Xu D, Miao J, Ju J, et al. Liver‐targeting MRI contrast agent based on galactose functionalized o‐carboxymethyl chitosan. Front Bioeng Biotechnol. 2023;11:1134665. https://doi.org/10.3389/fbioe.2023.1134665

[27]

He F, Zhu L, Zhou X, Zhang P, Cheng J, Qiao Y, et al. Red blood cell membrane‐coated ultrasmall NaGdF(4) nanoprobes for high‐resolution 3D magnetic resonance angiography. ACS Appl Mater Interfaces. 2022;14(23):26372–81. https://doi.org/10.1021/acsami.2c03530

[28]

Zairov RR, Akhmadeev BS, Fedorenko SV, Mustafina AR. Recent progress in design and surface modification of manganese nanoparticles for MRI contrasting and therapy. Chem Eng J. 2023;459:141640. https://doi.org/10.1016/j.cej.2023.141640

[29]

Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C. 2013;33(8):4485–97. https://doi.org/10.1016/j.msec.2013.07.012

[30]

Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc. 2000;122(35):8581–2. https://doi.org/10.1021/ja001628c

[31]

Sun SH, Zeng H. Size‐controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204–5. https://doi.org/10.1021/ja026501x

[32]

Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, et al. Ultra‐large‐scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3(12):891–5. https://doi.org/10.1038/nmat1251

[33]

Gao Z, Hou Y, Zeng J, Chen L, Liu C, Yang W, et al. Tumor microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater. 2017;29(24):1701095. https://doi.org/10.1002/adma.201701095

[34]

Zhang PS, Li WY, Liu C, Zhu L, Cheng J, Pang R, et al. Simultaneous identifying the infarct core, collaterals, and penumbra after acute ischemic stroke with a low‐immunogenic MRI nanoprobe. Mater Des. 2023;233:112211. https://doi.org/10.1016/j.matdes.2023.112211

[35]

van den Brink H, Doubal FN, Duering M. Advanced MRI in cerebral small vessel disease. Int J Stroke. 2023;18(1):28–35. https://doi.org/10.1177/17474930221091879

[36]

Chen L, Hong WQ, Ren WY, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Targeted Ther. 2021;6(1):225. https://doi.org/10.1038/s41392-021-00631-2

[37]

Zhang PS, Meng JL, Li YY, Yang C, Hou Y, Tang W, et al. Nanotechnology‐enhanced immunotherapy for metastatic cancer. Innovation. 2021;2(4):100174. https://doi.org/10.1016/j.xinn.2021.100174

[38]

Gil PR, Hühn D, del Mercato LL, Sasse D, Parak WJ. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res. 2010;62(2):115–25. https://doi.org/10.1016/j.phrs.2010.01.009

[39]

Mills PH, Ahrens ET. Theoretical MRI contrast model for exogenous T2 agents. Magn Reson Med. 2007;57(2):442–7. https://doi.org/10.1002/mrm.21145

[40]

Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc. 2005;127(35):12387–91. https://doi.org/10.1021/ja052337c

[41]

Bin Na H, Lee IS, Seo H, Park YI, Lee JH, Kim SW, et al. Versatile PEG‐derivatized phosphine oxide ligands for water‐dispersible metal oxide nanocrystals. Chem Commun. 2007(48):5167–9. https://doi.org/10.1039/b712721a

[42]

Li Z, Chen H, Bao HB, Gao M. One‐pot reaction to synthesize water‐soluble magnetite nanocrystals. Chem Mater. 2004;16(8):1391–3. https://doi.org/10.1021/cm035346y

[43]

Lu XY, Niu M, Qiao RR, Gao M. Superdispersible PVP‐coated Fe3O4 nanocrystals prepared by a “one‐pot” reaction. J Phys Chem B. 2008;112(46):14390–4. https://doi.org/10.1021/jp8025072

[44]

Li Z, Wei L, Gao M, Lei H. One‐pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater. 2005;17(8):1001–5. https://doi.org/10.1002/adma.200401545

[45]

Zeng JF, Jing LH, Hou Y, Jiao M, Qiao R, Jia Q, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater. 2014;26(17):2694–8. 2016. https://doi.org/10.1002/adma.201304744

[46]

Hu FQ, Li Z, Tu CF, Gao M. Preparation of magnetite nanocrystals with surface reactive moieties by one‐pot reaction. J Colloid Interface Sci. 2007;311(2):469–74. https://doi.org/10.1016/j.jcis.2007.03.023

[47]

Zhang PS, Zeng JF, Li YY, Yang C, Meng J, Hou Y, et al. Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew Chem Int Ed Engl. 2021;60(15):8130–8. https://doi.org/10.1002/anie.202014348

[48]

Ma TC, Zhang PS, Hou Y, Ning H, Wang Z, Huang J, et al. “smart” nanoprobes for visualization of tumor microenvironments. Adv Healthcare Mater. 2018;7(20):e1800391. https://doi.org/10.1002/adhm.201800391

[49]

Quillard T, Croce K, Jaffer FA, Weissleder R, Libby P. Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb Haemostasis. 2011;105(5):828–36. https://doi.org/10.1160/TH10-09-0589

[50]

Troncoso MF, Ortiz‐Quintero J, Garrido‐Moreno V, Sanhueza‐Olivares F, Guerrero‐Moncayo A, Chiong M, et al. VCAM‐1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta, Mol Basis Dis. 2021;1867(9):166170. https://doi.org/10.1016/j.bbadis.2021.166170

[51]

Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, Berjanskii M, et al. MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res. 2021;49(D1):D1259–67. https://doi.org/10.1093/nar/gkaa1067

[52]

Broza YY, Zhou X, Yuan MM, Qu D, Zheng Y, Vishinkin R, et al. Disease detection with molecular biomarkers: from chemistry of body fluids to nature‐inspired chemical sensors. Chem Rev. 2019;119(22):11761–817. https://doi.org/10.1021/acs.chemrev.9b00437

[53]

Wang T, Hou Y, Bu B, Wang W, Ma T, Liu C, et al. Timely visualization of the collaterals formed during acute ischemic stroke with Fe(3) O(4) nanoparticle‐based MR imaging probe. Small. 2018;14(23):e1800573. https://doi.org/10.1002/smll.201800573

[54]

Wei C, Jiang ZY, Li CC, Li P, Fu Q. Nanomaterials responsive to endogenous biomarkers for cardiovascular disease theranostics. Adv Funct Mater. 2023;33(26):2214655. https://doi.org/10.1002/adfm.202214655

[55]

Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin‐fibrin(ogen) interactions, host defense and risk of thrombosis. Int J Mol Sci. 2021;22(5):2590. https://doi.org/10.3390/ijms22052590

[56]

Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, et al. Inflammation in atherosclerosis. Circulation. 2006;114(1):55–62. https://doi.org/10.1161/circulationaha.106.619056

[57]

Johnson JL, Sala‐Newby GB, Ismail Y, Aguilera CM, Newby AC. Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam‐cell macrophages. Arterioscler Thromb Vasc Biol. 2008;28(9):1647–53. https://doi.org/10.1161/ATVBAHA.108.170548

[58]

Bäck M, Ketelhuth DFJ, Agewall S. Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis. 2010;52(5):410–28. https://doi.org/10.1016/j.pcad.2009.12.002

[59]

Alabi A, Xia XD, Gu HM, Wang F, Deng SJ, Yang N, et al. Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat Commun. 2021;12(1):1889. https://doi.org/10.1038/s41467-021-22167-3

[60]

Lenglet S, Thomas A, Chaurand P, Galan K, Mach F, Montecucco F. Molecular imaging of matrix metalloproteinases in atherosclerotic plaques. Thromb Haemostasis. 2012;107(3):409–16. https://doi.org/10.1160/th11-10-0717

[61]

Clemente C, Rius C, Alonso‐Herranz L, Martín‐Alonso M, Pollán Á, Camafeita E, et al. MT4‐MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9(1):910. https://doi.org/10.1038/s41467-018-03351-4

[62]

Fan CX, Shi JJ, Zhuang Y, Zhang L, Huang L, Yang W, et al. Myocardial‐infarction‐responsive smart hydrogels targeting matrix metalloproteinase for on‐demand growth factor delivery. Adv Mater. 2019;31(40):e1902900. https://doi.org/10.1002/adma.201902900

[63]

Lutgens SPM, Cleutjens KBJM, Daemen MJAP, Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 2007;21(12):3029–41. https://doi.org/10.1096/fj.06-7924com

[64]

Weiss‐Sadan T, Ben‐Nun Y, Maimoun D, Merquiol E, Abd‐Elrahman I, Gotsman I, et al. A theranostic cathepsin activity‐based probe for noninvasive intervention in cardiovascular diseases. Theranostics. 2019;9(20):5731–8. https://doi.org/10.7150/thno.34402

[65]

Liu CL, Guo JL, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol. 2018;15(6):351–70. https://doi.org/10.1038/s41569-018-0002-3

[66]

Tu YF, Ma XW, Chen H, Fan Y, Jiang L, Zhang R, et al. Molecular imaging of matrix metalloproteinase‐2 in atherosclerosis using a smart multifunctional PET/MRI nanoparticle. Int J Nanomedicine. 2022;17:6773–89. https://doi.org/10.2147/IJN.S385679

[67]

Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD. Alternatives to gadolinium‐based metal chelates for magnetic resonance imaging. Chem Rev. 2010;110(5):2960–3018. https://doi.org/10.1021/cr900284a

[68]

Ni DL, Bu WB, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev. 2017;46(23):7438–68. https://doi.org/10.1039/c7cs00316a

[69]

Xing HY, Zhang SJ, Bu WB, Zheng X, Wang L, Xiao Q, et al. Ultrasmall NaGdF4 nanodots for efficient MR angiography and atherosclerotic plaque imaging. Adv Mater. 2014;26(23):3867–72. https://doi.org/10.1002/adma.201305222

[70]

Zeng YJ, Li HN, Li ZQ, Luo Q, Zhu H, Gu Z, et al. Engineered gadolinium‐based nanomaterials as cancer imaging agents. Appl Mater Today. 2020;20:100686. https://doi.org/10.1016/j.apmt.2020.100686

[71]

Antwi‐Baah R, Wang YJ, Chen XQ, Yu K. Metal‐based nanoparticle magnetic resonance imaging contrast agents: classifications, issues, and countermeasures toward their clinical translation. Adv Mater Interfac. 2022;9(9):2101710. https://doi.org/10.1002/admi.202101710

[72]

Zhang L, Liu RQ, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single‐modality to multi‐modality. Nanoscale. 2016;8(20):10491–510. https://doi.org/10.1039/c6nr00267f

[73]

Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, et al. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc. 2007;129(16):5076–84. https://doi.org/10.1021/ja068356j

[74]

Li ZQ, Zhang Y, Jiang S. Multicolor core/shell‐structured upconversion fluorescent nanoparticles. Adv Mater. 2008;20(24):4765–9. https://doi.org/10.1002/adma.200801056

[75]

Hou Y, Qiao R, Fang F, Wang X, Dong C, Liu K, et al. NaGdF4 nanoparticle‐based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano. 2013;7(1):330–8. https://doi.org/10.1021/nn304837c

[76]

Johnson NJJ, Oakden W, Stanisz GJ, Scott Prosser R, van Veggel FCJM. Size‐tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement. Chem Mater. 2011;23(16):3714–22. https://doi.org/10.1021/cm201297x

[77]

Jiang ZL, Xia B, Ren F, Bao B, Xing W, He T, et al. Boosting vascular imaging‐performance and systemic biosafety of ultra‐small NaGdF(4) nanoparticles via surface engineering with rationally designed novel hydrophilic block co‐polymer. Small Methods. 2022;6(3):e2101145. https://doi.org/10.1002/smtd.202101145

[78]

Cao DJ. Macrophages in cardiovascular homeostasis and disease. Circulation. 2018;138(22):2452–5. https://doi.org/10.1161/CIRCULATIONAHA.118.035736

[79]

Hossaini Nasr S, Tonson A, El‐Dakdouki MH, Zhu DC, Agnew D, Wiseman R, et al. Effects of nanoprobe morphology on cellular binding and inflammatory responses: hyaluronan‐conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl Mater Interfaces. 2018;10(14):11495–11507. https://doi.org/10.1021/acsami.7b19708

[80]

Wang Q, Wang Y, Liu SW, Sha X, Song X, Dai Y, et al. Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE (‐/‐) mice. J Nanobiotechnol. 2021;19(1):222. https://doi.org/10.1186/s12951-021-00962-w

[81]

Qiao HY, Wang YB, Zhang RH, Gao Q, Liang X, Gao L, et al. MRI/optical dual‐modality imaging of vulnerable atherosclerotic plaque with an osteopontin‐targeted probe based on Fe(3)O(4) nanoparticles. Biomaterials. 2017;112:336–45. https://doi.org/10.1016/j.biomaterials.2016.10.011

[82]

Qiao RR, Qiao HY, Zhang Y, Wang Y, Chi C, Tian J, et al. Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin‐specific upconversion nanoprobes. ACS Nano. 2017;11(2):1816–25. https://doi.org/10.1021/acsnano.6b07842

[83]

Thorarinsdottir AE, Harris TD. Metal‐organic framework magnets. Chem Rev. 2020;120(16):8716–89. https://doi.org/10.1021/acs.chemrev.9b00666

[84]

Wu D, Zhou JJ, Creyer MN, Yim W, Chen Z, Messersmith PB, et al. Phenolic‐enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev. 2021;50(7):4432–83. https://doi.org/10.1039/d0cs00908c

[85]

Zhang PS, Hou Y, Zeng JF, Li Y, Wang Z, Zhu R, et al. Coordinatively unsaturated Fe(3+) based activatable probes for enhanced MRI and therapy of tumors. Angew Chem Int Ed Engl. 2019;58(32):11088–96. https://doi.org/10.1002/anie.201904880

[86]

Shin TH, Kim PK, Kang S, Cheong J, Kim S, Lim Y, et al. High‐resolution T(1) MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Eng. 2021;5(3):252–63. https://doi.org/10.1038/s41551-021-00687-z

[87]

Grobner T, Prischl FC. Gadolinium and nephrogenic systemic fibrosis. Kidney Int. 2007;72(3):260–4. https://doi.org/10.1038/sj.ki.5002338

[88]

Aime S, Botta M, Geninatti Crich S, Giovenzana G, Palmisano G, Sisti M. Novel paramagnetic macromolecular complexes derived from the linkage of a macrocyclic Gd(Ⅲ) complex to polyamino acids through a squaric acid moiety. Bioconjugate Chem. 1999;10(2):192–9. https://doi.org/10.1021/bc980030f

[89]

Janicki R, Mondry A. Structural and thermodynamic aspects of hydration of Gd(ⅲ) systems. Dalton Trans. 2019;48(10):3380–91. https://doi.org/10.1039/c8dt04869j

[90]

Desser TS, Rubin DL, Muller HH, Qing F, Khodor S, Zanazzi G, et al. Dynamics of tumor imaging with Gd‐DTPA‐polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imag. 1994;4(3):467–72. https://doi.org/10.1002/jmri.1880040337

[91]

Huang Y, Boamah PO, Gong JB, Zhang Q, Hua M, Ye Y. Gd (Ⅲ) complex conjugate of low‐molecular‐weight chitosan as a contrast agent for magnetic resonance/fluorescence dual‐modal imaging. Carbohydr Polym. 2016;143:288–95. https://doi.org/10.1016/j.carbpol.2016.02.032

[92]

Lu YD, Liang ZY, Feng J, Huang L, Guo S, Yi P, et al. Facile synthesis of weakly ferromagnetic organogadolinium macrochelates‐based T(1)‐weighted magnetic resonance imaging contrast agents. Adv Sci. 2022;10(1):e2205109. https://doi.org/10.1002/advs.202205109

[93]

Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv. 2014;32(4):818–30. https://doi.org/10.1016/j.biotechadv.2013.12.008

[94]

Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23(4):938. https://doi.org/10.3390/molecules23040938

[95]

Venditto VJ, Regino CAS, Brechbiel MW. PAMAM dendrimer based macromolecules as improved contrast agents. Mol Pharm. 2005;2(4):302–11. https://doi.org/10.1021/mp050019e

[96]

Luo K, Liu G, He B, Wu Y, Gong Q, Song B, et al. Multifunctional gadolinium‐based dendritic macromolecules as liver targeting imaging probes. Biomaterials. 2011;32(10):2575–85. https://doi.org/10.1016/j.biomaterials.2010.12.049

[97]

Hankey GJ. Evolution of evidence‐based medicine in stroke. Cerebrovasc Dis. 2021;50(6):644–55. https://doi.org/10.1159/000517679

[98]

Li W, Cheng J, He F, Zhang P, Zhang N, Wang J, et al. Cell membrane‐based nanomaterials for theranostics of central nervous system diseases. J Nanobiotechnol. 2023;21(1):276. https://doi.org/10.1186/s12951-023-02004-z

[99]

Losseff N, Adams M, Brown MM, Grieve J, Simister R. Stroke and cerebrovascular diseases. Neurology: A Queen Square Textbook. 2016:133–85. https://doi.org/10.1002/9781118486160.ch5

[100]

Gao GH, Lee JW, Nguyen MK, Im GH, Yang J, Heo H, et al. pH‐responsive polymeric micelle based on PEG‐poly(β‐amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Contr Release. 2011;155(1):11–7. https://doi.org/10.1016/j.jconrel.2010.09.012

[101]

Fagan SC, Nagaraja TN, Fenstermacher JD, Zheng J, Johnson M, Knight RA. Hemorrhagic transformation is related to the duration of occlusion and treatment with tissue plasminogen activator in a nonembolic stroke model. Neurol Res. 2003;25(4):377–82. https://doi.org/10.1179/016164103101201526

[102]

Hou W, Jiang Y, Xie G, Zhao L, Zhao F, Zhang X, et al. Biocompatible BSA‐MnO(2) nanoparticles for in vivo timely permeability imaging of blood‐brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. Nanoscale. 2021;13(18):8531–42. https://doi.org/10.1039/d1nr02015c

[103]

Zhang P, Feng Y, Zhu L, Xu K, Ouyang Q, Zeng J, et al. Predicting thrombolytic haemorrhage risk of acute ischemic stroke through angiogenesis/inflammation dual‐targeted MR imaging. Nano Today. 2023;48:101707. https://doi.org/10.1016/j.nantod.2022.101707

[104]

Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185(10):1630–45. https://doi.org/10.1016/j.cell.2022.04.004

[105]

Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103(3):415–22. https://doi.org/10.1161/01.cir.103.3.415

[106]

Trivedi R, U‐King‐Im J, Gillard J. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaque. Circulation. 2003;108(19):e140. authorreplye140. https://doi.org/10.1161/01.CIR.0000099904.42881.09

[107]

Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, et al. Superparamagnetic iron oxide‐enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35(8):460–71. https://doi.org/10.1097/00004424-200008000-00002

[108]

Zhang R, Lu K, Xiao L, Hu X, Cai W, Liu L, et al. Exploring atherosclerosis imaging with contrast‐enhanced MRI using PEGylated ultrasmall iron oxide nanoparticles. Front Bioeng Biotechnol. 2023;11:1279446. https://doi.org/10.3389/fbioe.2023.1279446

[109]

Vazquez‐Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Targeted molecular imaging of cardiovascular diseases by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol. 2021;41(2):601–13. https://doi.org/10.1161/ATVBAHA.120.315404

[110]

Michalska M, Machtoub L, Manthey HD, Bauer E, Herold V, Krohne G, et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule‐1‐specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012;32(10):2350–7. https://doi.org/10.1161/ATVBAHA.112.255224

[111]

Wang Y, Chen J, Yang B, Qiao H, Gao L, Su T, et al. In vivo MR and fluorescence dual‐modality imaging of atherosclerosis characteristics in mice using profilin‐1 targeted magnetic nanoparticles. Theranostics. 2016;6(2):272–86. https://doi.org/10.7150/thno.13350

[112]

Segers FME, den Adel B, Bot I, van der Graaf LM, van der Veer EP, Gonzalez W, et al. Scavenger receptor‐AI‐targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2013;33(8):1812–9. https://doi.org/10.1161/ATVBAHA.112.300707

[113]

Tu C, Ng TSC, Sohi HK, Palko HA, House A, Jacobs RE, et al. Receptor‐targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32(29):7209–16. https://doi.org/10.1016/j.biomaterials.2011.06.026

[114]

Terashima M, Uchida M, Kosuge H, Tsao PS, Young MJ, Conolly SM, et al. Human ferritin cages for imaging vascular macrophages. Biomaterials. 2011;32(5):1430–7. https://doi.org/10.1016/j.biomaterials.2010.09.029

[115]

Nandwana V, Ryoo SR, Kanthala S, McMahon KM, Rink JS, Li Y, et al. High‐density lipoprotein‐like magnetic nanostructures (HDL‐MNS):theranostic agents for cardiovascular disease. Chem Mater. 2017;29(5):2276–82. https://doi.org/10.1021/acs.chemmater.6b05357

[116]

Cheng D, Li X, Zhang C, Tan H, Wang C, Pang L, et al. Detection of vulnerable atherosclerosis plaques with a dual‐modal single‐photon‐emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces. 2015;7(4):2847–55. https://doi.org/10.1021/am508118x

[117]

Werner EJ, Datta A, Jocher CJ, Raymond KN. High‐relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed Engl. 2008;47(45):8568–80. https://doi.org/10.1002/anie.200800212

[118]

Martínez‐Parra L, Piñol‐Cancer M, Sanchez‐Cano C, Miguel‐Coello AB, Di Silvio D, Gomez AM, et al. A comparative study of ultrasmall calcium carbonate nanoparticles for targeting and imaging atherosclerotic plaque. ACS Nano. 2023;17(14):13811–25. https://doi.org/10.1021/acsnano.3c03523

[119]

Zhang L, Xue S, Ren F, Huang S, Zhou R, Wang Y, et al. An atherosclerotic plaque‐targeted single‐chain antibody for MR/NIR‐Ⅱ imaging of atherosclerosis and anti‐atherosclerosis therapy. J Nanobiotechnol. 2021;19(1):296. https://doi.org/10.1186/s12951-021-01047-4

[120]

Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276(6):618–32. https://doi.org/10.1111/joim.12296

iRADIOLOGY
Pages 264-284
Cite this article:
Li W, Zhang R, Zhang X, et al. Precise diagnosis of cardiac‐cerebral vascular diseases with magnetic resonance imaging‐based nanoprobes. iRADIOLOGY, 2024, 2(3): 264-284. https://doi.org/10.1002/ird3.87

83

Views

2

Downloads

0

Crossref

Altmetrics

Received: 14 March 2024
Accepted: 13 May 2024
Published: 20 June 2024
© 2024 The Author(s). Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return