PDF (259.6 KB)
Collect
Submit Manuscript
Commentary | Open Access

The roadblocks to AI adoption in surgery: Data, real‐time applications and ethics

Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
Show Author Information

Graphical Abstract

View original image Download original image
This paper explores the critical barriers to AI integration in surgery, focusing on challenges in data management, real‐time application and ethics. It emphasizes the need for robust data‐sharing frameworks, advancements in real‐time processing capabilities and ethical guidelines to ensure responsible AI deployment.

References

[1]

Bodenstedt S, Wagner M, Müller‐Stich BP, Weitz J, Speidel S. Artificial intelligence‐assisted surgery: potential and challenges. Visc Med. 2020;36(6):450–5. https://doi.org/10.1159/000511351

[2]

Natarajan P, Rogers B. Applied machine learning for healthcare. Demystifying big data and machine learning for healthcare. Boca Raton: Taylor & Francis/CRC Press; 2017. p. 77–105. https://doi.org/10.1201/9781315389325‐7

[3]

Meireles OR, Rosman G, Altieri MS, Carin L, Hager G, Madani A, et al. SAGES consensus recommendations on an annotation framework for surgical video. Surg Endosc. 2021;35(9):4918–29. https://doi.org/10.1007/s00464-021-08578-9

[4]

Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022;276(2):363–9. https://doi.org/10.1097/SLA.0000000000004594

[5]

Martignani C. Cybersecurity in cardiac implantable electronic devices. Expet Rev Med Dev. 2019;16(6):437–44. https://doi.org/10.1080/17434440.2019.1614440

[6]

Wasserman L, Wasserman Y. Hospital cybersecurity risks and gaps: review (for the non‐cyber professional). Front Digit Health. 2022;4:862221. https://doi.org/10.3389/fdgth.2022.862221

[7]

Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31–8. https://doi.org/10.1038/s41591-021-01614-0

[8]

Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A. A systematic review on artificial intelligence in robot‐assisted surgery. Int J Surg. 2021;95:106151. https://doi.org/10.1016/j.ijsu.2021.106151

[9]

Zuluaga L, Rich JM, Gupta R, Pedraza A, Ucpinar B, Okhawere KE, et al. AI‐powered real‐time annotations during urologic surgery: the future of training and quality metrics. Urol Oncol. 2024;42(3):57–66. https://doi.org/10.1016/j.urolonc.2023.11.002

Medicine Advances
Pages 380-383
Cite this article:
Cunha Reis T. The roadblocks to AI adoption in surgery: Data, real‐time applications and ethics. Medicine Advances, 2024, 2(4): 380-383. https://doi.org/10.1002/med4.82
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return