Accurate staging systems are essential for assessing the severity of idiopathic pulmonary fibrosis (IPF) and guiding clinical management. This study aimed to evaluate the prognostic value of pulmonary comorbidities and body mass index (BMI) in IPF, develop a nomogram predicting overall survival (OS), and create a nomogram‐based survival prediction model.
Patients with IPF were identified from electronic medical records of the West Virginia hospital system. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was used for variable selection, and a nomogram was constructed. Risk groups were defined based on the nomogram's probability tertiles. The performance of the nomogram‐based model was evaluated using Harrell's concordance index (C‐index) and the Hosmer–Lemeshow test.
The study included 152 patients with IPF. The majority of the patients were elderly, male, and had a BMI above 24 kg/m2. The median survival duration was 7.6 years. The survival rates were 91% at 1 year, 78% at 3 years, and 68% at 5 years. LASSO regression selected carbon monoxide lung diffusion capacity percentage predicted (DLco%), BMI, pulmonary hypertension, pulmonary embolism, and sleep apnea as independent predictive variables. The nomogram demonstrated good discrimination (C‐index = 0.71) and calibration.
Pulmonary comorbidities and BMI have significant prognostic value in IPF, emphasizing the necessity for consistent screening, assessment, and management of these factors in IPF care. Furthermore, the nomogram‐based staging system showed promising performance in predicting OS and represents an actionable staging system that could potentially improve clinical management in IPF. Further validation of the nomogram is warranted to confirm its utility in clinical practice.
O’Connell OJ, Egan JJ. The burden of disease and the need for a simple staging system in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;189(7):765–7. https://doi.org/10.1164/rccm.201402-0306ED
Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156(10):684–91. https://doi.org/10.7326/0003-4819-156-10-201205150-00004
Caminati A, Lonati C, Cassandro R, Elia D, Pelosi G, Torre O, et al. Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev. 2019;28(153):190044. https://doi.org/10.1183/16000617.0044-2019
Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46(4):1113–30. https://doi.org/10.1183/13993003.02316-2014
Torrisi SE, Ley B, Kreuter M, Wijsenbeek M, Vittinghoff E, Collard HR, et al. The added value of comorbidities in predicting survival in idiopathic pulmonary fibrosis: a multicentre observational study. Eur Respir J. 2019;53(3):1801587. https://doi.org/10.1183/13993003.01587-2018
Lacedonia D, De Pace CC, Rea G, Capitelli L, Gallo C, Scioscia G, et al. Machine learning and BMI improve the prognostic value of GAP index in treated IPF patients. Bioengineering. 2023;10(2):251. https://doi.org/10.3390/bioengineering10020251
Suzuki Y, Mori K, Aono Y, Kono M, Hasegawa H, Yokomura K, et al. Combined assessment of the GAP index and body mass index at antifibrotic therapy initiation for prognosis of idiopathic pulmonary fibrosis. Sci Rep. 2021;11(1):18579. https://doi.org/10.1038/s41598-021-98161-y
Chun FKH, Briganti A, Karakiewicz PI, Graefen M. Should we use nomograms to predict outcome? Eur Urol Suppl. 2008;7(5):396–9. https://doi.org/10.1016/j.eursup.2008.01.011
Shariat SF, Karakiewicz PI, Godoy G, Lerner SP. Use of nomograms for predictions of outcome in patients with advanced bladder cancer. Ther Adv Urol. 2009;1(1):13–26. https://doi.org/10.1177/1756287209103923
Lee W, Lam SK, Zhang Y, Yang R, Cai J. Review of methodological workflow, interpretation and limitations of nomogram application in cancer study. Radiat Med Prot. 2022;3(4):200–7. https://doi.org/10.1016/j.radmp.2022.08.004
Raghu G, Remy‐Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–68. https://doi.org/10.1164/rccm.201807-1255st
Sangani R, Ghio A, Culp S, Patel Z, Sharma S. Combined pulmonary fibrosis emphysema: role of cigarette smoking and pulmonary hypertension in a rural cohort. Int J Chronic Obstr Pulm Dis. 2021;16:1873–85. https://doi.org/10.2147/COPD.S307192
Sangani RG, Ghio AJ, Mujahid H, Patel Z, Catherman K, Wen S, et al. Outcomes of idiopathic pulmonary fibrosis improve with obesity: a rural Appalachian experience. South Med J. 2021;114(7):424–31. https://doi.org/10.14423/SMJ.0000000000001275
Yoon HY, Kim H, Bae Y, Song JW. Smoking status and clinical outcome in idiopathic pulmonary fibrosis: a nationwide study. Respir Res. 2024;25(1):191. https://doi.org/10.1186/s12931-024-02819-w
Becklake MR, Lalloo U. The ‘healthy smoker’: a phenomenon of health selection? Respiration. 1990;57(3):137–44. https://doi.org/10.1159/000195837
van Walraven C, McCudden C, Austin PC. Imputing missing laboratory results may return erroneous values because they are not missing at random. J Clin Epidemiol. 2023;154:65–74. https://doi.org/10.1016/j.jclinepi.2022.12.011
Ross RK, Breskin A, Westreich D. When is a complete‐case approach to missing data valid? The importance of effect‐measure modification. Am J Epidemiol. 2020;189(12):1583–9. https://doi.org/10.1093/aje/kwaa124
Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338(jun29 1):b2393. https://doi.org/10.1136/bmj.b2393
Behr J, Prasse A, Wirtz H, Koschel D, Pittrow D, Held M, et al. Survival and course of lung function in the presence or absence of antifibrotic treatment in patients with idiopathic pulmonary fibrosis: long‐term results of the INSIGHTS‐IPF registry. Eur Respir J. 2020;56(2):1902279. https://doi.org/10.1183/13993003.02279-2019
Fainberg HP, Oldham JM, Molyneau PL, Allen RJ, Kraven LM, Fahy WA, et al. Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a secondary analysis of a multicentre, prospective, observational cohort. Lancet Digit Health. 2022;4(12):e862–72. https://doi.org/10.1016/S2589-7500(22)00173-X
Patridge EF, Bardyn TP. Research electronic data capture (REDCap). J Med Libr Assoc. 2018;106(1):142–4. https://doi.org/10.5195/JMLA.2018.319
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 1996;58(1):267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81(3):515–26. https://doi.org/10.1093/biomet/81.3.515
Turkson AJ, Ayiah‐Mensah F, Nimoh V. Handling censoring and censored data in survival analysis: a standalone systematic literature review. Int J Math Math Sci. 2021;2021:9307475. https://doi.org/10.1155/2021/9307475
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543–6. https://doi.org/10.1001/JAMA.1982.03320430047030
Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, MacAskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73. https://doi.org/10.7326/M14-0698
Ley B, Collard HR, King TE. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–40. https://doi.org/10.1164/rccm.201006-0894ci
Hyldgaard C, Møller J, Bendstrup E. Changes in management of idiopathic pulmonary fibrosis: impact on disease severity and mortality. Eur Clin Respir J. 2020;7(1):1807682. https://doi.org/10.1080/20018525.2020.1807682
Yoon HY, Kim TH, Seo JB, Lee SM, Lim S, Lee HN, et al. Effects of emphysema on physiological and prognostic characteristics of lung function in idiopathic pulmonary fibrosis. Respirology. 2019;24(1):55–62. https://doi.org/10.1111/resp.13387
Kim YS, Jin GY, Chae KJ, Han YM, Chon SB, Lee YS, et al. Visually stratified CT honeycombing as a survival predictor in combined pulmonary fibrosis and emphysema. Br J Radiol. 2015;88(1055):20150545. https://doi.org/10.1259/bjr.20150545
Doubková M, Švancara J, Svoboda M, Šterclová M, Bartoš V, Plačková M, et al. EMPIRE Registry, Czech Part: impact of demographics, pulmonary function and HRCT on survival and clinical course in idiopathic pulmonary fibrosis. Clin Res J. 2018;12(4):1526–35. https://doi.org/10.1111/crj.12700
Zinellu A, Carru C, Pirina P, Fois AG, Mangoni AA. A systematic review of the prognostic significance of the body mass index in idiopathic pulmonary fibrosis. J Clin Med. 2023;12(2):498. https://doi.org/10.3390/jcm12020498
Nishiyama O, Yamazaki R, Sano H, Iwanaga T, Higashimoto Y, Kume H, et al. Fat‐free mass index predicts survival in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22(3):480–5. https://doi.org/10.1111/resp.12941
Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care. 2015;18(6):535–51. https://doi.org/10.1097/MCO.0000000000000216
Jensen GL, Cederholm T, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. JPEN ‐ J Parenter Enter Nutr. 2019;43(1):32–40. https://doi.org/10.1002/jpen.1440
Shakersain B, Santoni G, Faxén‐Irving G, Rizzuto D, Fratiglioni L, Xu W. Nutritional status and survival among old adults: an 11‐year population‐based longitudinal study. Eur J Clin Nutr. 2016;70(3):320–5. https://doi.org/10.1038/ejcn.2015.109
Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82. https://doi.org/10.1056/NEJMoa1402584
Jouneau S, Kerjouan M, Rousseau C, Lederlin M, Llamas‐Guttierez F, De Latour B, et al. What are the best indicators to assess malnutrition in idiopathic pulmonary fibrosis patients? A cross‐sectional study in a referral center. Nutrition. 2019;62:115–21. https://doi.org/10.1016/j.nut.2018.12.008
Kasprzyk A, Bilmin K, Chmielewska‐Ignatowicz T, Pawlikowski J, Religioni U, Merks P. The role of nutritional support in malnourished patients with lung cancer. In Vivo. 2021;35(1):53–60. https://doi.org/10.21873/invivo.12231
Waxman AB, Elia D, Adir Y, Humbert M, Harari S. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur Respir Rev. 2022;31(165):210220. https://doi.org/10.1183/16000617.0220-2021
Nikkho SM, Richter MJ, Shen E, Abman SH, Antoniou K, Chung J, et al. Clinical significance of pulmonary hypertension in interstitial lung disease: a consensus statement from the Pulmonary Vascular Research Institute’s innovative drug development initiative‐Group 3 pulmonary hypertension. Pulm Circ. 2022;12(3):e12127. https://doi.org/10.1002/pul2.12127
Patel NM, Lederer DJ, Borczuk AC, Kawut SM. Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest. 2007;132(3):998–1006. https://doi.org/10.1378/chest.06-3087
Kimura M, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishiyama O, et al. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration. 2013;85(6):456–63. https://doi.org/10.1159/000345221
Olschewski H, Behr J, Bremer H, Claussen M, Douschan P, Halank M, et al. Pulmonary hypertension due to lung diseases: updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol. 2018;272S:63–8. https://doi.org/10.1016/j.ijcard.2018.08.043
Waxman A, Restrepo‐Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021;384(4):325–34. https://doi.org/10.1056/NEJMoa2008470
Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Maher TM, Nair A, et al. Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis. Eur Respir J. 2017;50(1):1700379. https://doi.org/10.1183/13993003.00379-2017
Kim HJ, Snyder LD, Neely ML, Hellkamp AS, Hotchkin DL, Morrison LD, et al. Clinical outcomes of patients with combined idiopathic pulmonary fibrosis and emphysema in the IPF‐PRO Registry. Lung. 2022;200(1):21–9. https://doi.org/10.1007/s00408-021-00506-x
Sugino K, Ishida F, Kikuchi N, Hirota N, Sano G, Sato K, et al. Comparison of clinical characteristics and prognostic factors of combined pulmonary fibrosis and emphysema versus idiopathic pulmonary fibrosis alone. Respirology. 2014;19(2):239–45. https://doi.org/10.1111/resp.12207
Zhang L, Zhang C, Dong F, Song Q, Chi F, Liu L, et al. Combined pulmonary fibrosis and emphysema: a retrospective analysis of clinical characteristics, treatment and prognosis. BMC Pulm Med. 2016;16(1):137. https://doi.org/10.1186/s12890-016-0300-7
Ozawa Y, Suda T, Naito T, Enomoto N, Hashimoto D, Fujisawa T, et al. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology. 2009;14(5):723–8. https://doi.org/10.1111/j.1440-1843.2009.01547.x
Vancheri C, Failla M, Crimi N, Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J. 2010;35(3):496–504. https://doi.org/10.1183/09031936.00077309
Karampitsakos T, Spagnolo P, Mogulkoc N, Wuyts WA, Tomassetti S, Bendstrup E, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: a retrospective multicentre study in Europe. Respirology. 2023;28(1):56–65. https://doi.org/10.1111/resp.14363
Tomassetti S, Gurioli C, Ryu JH, Decker PA, Ravaglia C, Tantalocco P, et al. The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest. 2015;147(1):157–64. https://doi.org/10.1378/chest.14-0359
Kim H, Yoo H, Pyo H, Ahn YC, Noh JM, Ju SG, et al. Impact of underlying pulmonary diseases on treatment outcomes in early‐stage non‐small cell lung cancer treated with definitive radiotherapy. Int J Chronic Obstr Pulm Dis. 2019;14:2273–81. https://doi.org/10.2147/COPD.S210759
Vasakova M, Sterclova M, Moğulkoç N, Lewandowska K, Müller V, Hajkova M, et al. Healthy survivor bias in patients with idiopathic pulmonary fibrosis in clinical registries. Eur Respir J. 2021;58(Suppl 65):PA477. https://doi.org/10.1183/13993003.congress-2021.pa477
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8. https://doi.org/10.1093/aje/kwk052
Topoluk N, Patel JJ. The implications of using BMI alone in outcomes research. Chest. 2022;162(4):e204. https://doi.org/10.1016/j.chest.2022.06.043
Bleeker SE, Moll HA, Steyerberg EW, Donders ART, Derksen‐Lubsen G, Grobbee DE, et al. External validation is necessary in prediction research: a clinical example. J Clin Epidemiol. 2003;56(9):826–32. https://doi.org/10.1016/s0895-4356(03)00207-5
Zhang X, Ren Y, Xie B, Wang S, Geng J, He X, et al. External validation of the GAP model in Chinese patients with idiopathic pulmonary fibrosis. Clin Res J. 2023;17(9):831–40. https://doi.org/10.1111/crj.13564
Lee SH, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, et al. Predicting survival of patients with idiopathic pulmonary fibrosis using GAP score: a nationwide cohort study. Respir Res. 2016;17(1):131. https://doi.org/10.1186/s12931-016-0454-0