PDF (885.5 KB)
Collect
Submit Manuscript
Original Article | Open Access

Development of a local nomogram‐based scoring system for predicting overall survival in idiopathic pulmonary fibrosis: A rural appalachian experience

Rowida Mohamed1 ()Rahul G. Sangani2Khalid M. Kamal3Traci J. LeMaster3Toni Marie Rudisill4Virginia G. Scott3George A. Kelley4,5Sijin Wen4
Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
Pulmonary and Critical Care Medicine, Northeast Georgia Health System, Gainesville, Georgia, USA
Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
School of Public and Population Health and Department of Kinesiology, Boise State University, Boise, Idaho, USA
Show Author Information

Graphical Abstract

View original image Download original image
In our study, we developed a nomogram‐based risk‐staging system for idiopathic pulmonary fibrosis based on inpatient data from West Virginia University Medicine hospitals. We identified DLco%, body mass index (used as an indicator of malnutrition), pulmonary hypertension, pulmonary embolism, and sleep apnea as independent predictors of overall survival. Nomograms offer a reliable visualization of multivariable prognostic models.

Abstract

Background

Accurate staging systems are essential for assessing the severity of idiopathic pulmonary fibrosis (IPF) and guiding clinical management. This study aimed to evaluate the prognostic value of pulmonary comorbidities and body mass index (BMI) in IPF, develop a nomogram predicting overall survival (OS), and create a nomogram‐based survival prediction model.

Methods

Patients with IPF were identified from electronic medical records of the West Virginia hospital system. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was used for variable selection, and a nomogram was constructed. Risk groups were defined based on the nomogram's probability tertiles. The performance of the nomogram‐based model was evaluated using Harrell's concordance index (C‐index) and the Hosmer–Lemeshow test.

Results

The study included 152 patients with IPF. The majority of the patients were elderly, male, and had a BMI above 24 kg/m2. The median survival duration was 7.6 years. The survival rates were 91% at 1 year, 78% at 3 years, and 68% at 5 years. LASSO regression selected carbon monoxide lung diffusion capacity percentage predicted (DLco%), BMI, pulmonary hypertension, pulmonary embolism, and sleep apnea as independent predictive variables. The nomogram demonstrated good discrimination (C‐index = 0.71) and calibration.

Conclusions

Pulmonary comorbidities and BMI have significant prognostic value in IPF, emphasizing the necessity for consistent screening, assessment, and management of these factors in IPF care. Furthermore, the nomogram‐based staging system showed promising performance in predicting OS and represents an actionable staging system that could potentially improve clinical management in IPF. Further validation of the nomogram is warranted to confirm its utility in clinical practice.

Electronic Supplementary Material

Download File(s)
med-2-4-336_ESM.docx (112.2 KB)

References

[1]

O’Connell OJ, Egan JJ. The burden of disease and the need for a simple staging system in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;189(7):765–7. https://doi.org/10.1164/rccm.201402-0306ED

[2]

Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156(10):684–91. https://doi.org/10.7326/0003-4819-156-10-201205150-00004

[3]

Caminati A, Lonati C, Cassandro R, Elia D, Pelosi G, Torre O, et al. Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev. 2019;28(153):190044. https://doi.org/10.1183/16000617.0044-2019

[4]

Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46(4):1113–30. https://doi.org/10.1183/13993003.02316-2014

[5]

Torrisi SE, Ley B, Kreuter M, Wijsenbeek M, Vittinghoff E, Collard HR, et al. The added value of comorbidities in predicting survival in idiopathic pulmonary fibrosis: a multicentre observational study. Eur Respir J. 2019;53(3):1801587. https://doi.org/10.1183/13993003.01587-2018

[6]

Lacedonia D, De Pace CC, Rea G, Capitelli L, Gallo C, Scioscia G, et al. Machine learning and BMI improve the prognostic value of GAP index in treated IPF patients. Bioengineering. 2023;10(2):251. https://doi.org/10.3390/bioengineering10020251

[7]

Suzuki Y, Mori K, Aono Y, Kono M, Hasegawa H, Yokomura K, et al. Combined assessment of the GAP index and body mass index at antifibrotic therapy initiation for prognosis of idiopathic pulmonary fibrosis. Sci Rep. 2021;11(1):18579. https://doi.org/10.1038/s41598-021-98161-y

[8]

Chun FKH, Briganti A, Karakiewicz PI, Graefen M. Should we use nomograms to predict outcome? Eur Urol Suppl. 2008;7(5):396–9. https://doi.org/10.1016/j.eursup.2008.01.011

[9]

Shariat SF, Karakiewicz PI, Godoy G, Lerner SP. Use of nomograms for predictions of outcome in patients with advanced bladder cancer. Ther Adv Urol. 2009;1(1):13–26. https://doi.org/10.1177/1756287209103923

[10]

Lee W, Lam SK, Zhang Y, Yang R, Cai J. Review of methodological workflow, interpretation and limitations of nomogram application in cancer study. Radiat Med Prot. 2022;3(4):200–7. https://doi.org/10.1016/j.radmp.2022.08.004

[11]

Raghu G, Remy‐Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–68. https://doi.org/10.1164/rccm.201807-1255st

[12]

Sangani R, Ghio A, Culp S, Patel Z, Sharma S. Combined pulmonary fibrosis emphysema: role of cigarette smoking and pulmonary hypertension in a rural cohort. Int J Chronic Obstr Pulm Dis. 2021;16:1873–85. https://doi.org/10.2147/COPD.S307192

[13]

Sangani RG, Ghio AJ, Mujahid H, Patel Z, Catherman K, Wen S, et al. Outcomes of idiopathic pulmonary fibrosis improve with obesity: a rural Appalachian experience. South Med J. 2021;114(7):424–31. https://doi.org/10.14423/SMJ.0000000000001275

[14]

Yoon HY, Kim H, Bae Y, Song JW. Smoking status and clinical outcome in idiopathic pulmonary fibrosis: a nationwide study. Respir Res. 2024;25(1):191. https://doi.org/10.1186/s12931-024-02819-w

[15]

Becklake MR, Lalloo U. The ‘healthy smoker’: a phenomenon of health selection? Respiration. 1990;57(3):137–44. https://doi.org/10.1159/000195837

[16]

van Walraven C, McCudden C, Austin PC. Imputing missing laboratory results may return erroneous values because they are not missing at random. J Clin Epidemiol. 2023;154:65–74. https://doi.org/10.1016/j.jclinepi.2022.12.011

[17]

Ross RK, Breskin A, Westreich D. When is a complete‐case approach to missing data valid? The importance of effect‐measure modification. Am J Epidemiol. 2020;189(12):1583–9. https://doi.org/10.1093/aje/kwaa124

[18]

Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338(jun29 1):b2393. https://doi.org/10.1136/bmj.b2393

[19]

Behr J, Prasse A, Wirtz H, Koschel D, Pittrow D, Held M, et al. Survival and course of lung function in the presence or absence of antifibrotic treatment in patients with idiopathic pulmonary fibrosis: long‐term results of the INSIGHTS‐IPF registry. Eur Respir J. 2020;56(2):1902279. https://doi.org/10.1183/13993003.02279-2019

[20]

Fainberg HP, Oldham JM, Molyneau PL, Allen RJ, Kraven LM, Fahy WA, et al. Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a secondary analysis of a multicentre, prospective, observational cohort. Lancet Digit Health. 2022;4(12):e862–72. https://doi.org/10.1016/S2589-7500(22)00173-X

[21]

Patridge EF, Bardyn TP. Research electronic data capture (REDCap). J Med Libr Assoc. 2018;106(1):142–4. https://doi.org/10.5195/JMLA.2018.319

[22]

Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 1996;58(1):267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

[23]

Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81(3):515–26. https://doi.org/10.1093/biomet/81.3.515

[24]

Turkson AJ, Ayiah‐Mensah F, Nimoh V. Handling censoring and censored data in survival analysis: a standalone systematic literature review. Int J Math Math Sci. 2021;2021:9307475. https://doi.org/10.1155/2021/9307475

[25]

Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247(18):2543–6. https://doi.org/10.1001/JAMA.1982.03320430047030

[26]

Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, MacAskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73. https://doi.org/10.7326/M14-0698

[27]

Ley B, Collard HR, King TE. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–40. https://doi.org/10.1164/rccm.201006-0894ci

[28]

Hyldgaard C, Møller J, Bendstrup E. Changes in management of idiopathic pulmonary fibrosis: impact on disease severity and mortality. Eur Clin Respir J. 2020;7(1):1807682. https://doi.org/10.1080/20018525.2020.1807682

[29]

Yoon HY, Kim TH, Seo JB, Lee SM, Lim S, Lee HN, et al. Effects of emphysema on physiological and prognostic characteristics of lung function in idiopathic pulmonary fibrosis. Respirology. 2019;24(1):55–62. https://doi.org/10.1111/resp.13387

[30]

Kim YS, Jin GY, Chae KJ, Han YM, Chon SB, Lee YS, et al. Visually stratified CT honeycombing as a survival predictor in combined pulmonary fibrosis and emphysema. Br J Radiol. 2015;88(1055):20150545. https://doi.org/10.1259/bjr.20150545

[31]

Doubková M, Švancara J, Svoboda M, Šterclová M, Bartoš V, Plačková M, et al. EMPIRE Registry, Czech Part: impact of demographics, pulmonary function and HRCT on survival and clinical course in idiopathic pulmonary fibrosis. Clin Res J. 2018;12(4):1526–35. https://doi.org/10.1111/crj.12700

[32]

Zinellu A, Carru C, Pirina P, Fois AG, Mangoni AA. A systematic review of the prognostic significance of the body mass index in idiopathic pulmonary fibrosis. J Clin Med. 2023;12(2):498. https://doi.org/10.3390/jcm12020498

[33]

Nishiyama O, Yamazaki R, Sano H, Iwanaga T, Higashimoto Y, Kume H, et al. Fat‐free mass index predicts survival in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22(3):480–5. https://doi.org/10.1111/resp.12941

[34]

Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care. 2015;18(6):535–51. https://doi.org/10.1097/MCO.0000000000000216

[35]

Jensen GL, Cederholm T, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. JPEN ‐ J Parenter Enter Nutr. 2019;43(1):32–40. https://doi.org/10.1002/jpen.1440

[36]

Shakersain B, Santoni G, Faxén‐Irving G, Rizzuto D, Fratiglioni L, Xu W. Nutritional status and survival among old adults: an 11‐year population‐based longitudinal study. Eur J Clin Nutr. 2016;70(3):320–5. https://doi.org/10.1038/ejcn.2015.109

[37]

Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82. https://doi.org/10.1056/NEJMoa1402584

[38]

Jouneau S, Kerjouan M, Rousseau C, Lederlin M, Llamas‐Guttierez F, De Latour B, et al. What are the best indicators to assess malnutrition in idiopathic pulmonary fibrosis patients? A cross‐sectional study in a referral center. Nutrition. 2019;62:115–21. https://doi.org/10.1016/j.nut.2018.12.008

[39]

Kasprzyk A, Bilmin K, Chmielewska‐Ignatowicz T, Pawlikowski J, Religioni U, Merks P. The role of nutritional support in malnourished patients with lung cancer. In Vivo. 2021;35(1):53–60. https://doi.org/10.21873/invivo.12231

[40]

Waxman AB, Elia D, Adir Y, Humbert M, Harari S. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur Respir Rev. 2022;31(165):210220. https://doi.org/10.1183/16000617.0220-2021

[41]

Nikkho SM, Richter MJ, Shen E, Abman SH, Antoniou K, Chung J, et al. Clinical significance of pulmonary hypertension in interstitial lung disease: a consensus statement from the Pulmonary Vascular Research Institute’s innovative drug development initiative‐Group 3 pulmonary hypertension. Pulm Circ. 2022;12(3):e12127. https://doi.org/10.1002/pul2.12127

[42]

Patel NM, Lederer DJ, Borczuk AC, Kawut SM. Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest. 2007;132(3):998–1006. https://doi.org/10.1378/chest.06-3087

[43]

Kimura M, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishiyama O, et al. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration. 2013;85(6):456–63. https://doi.org/10.1159/000345221

[44]

Olschewski H, Behr J, Bremer H, Claussen M, Douschan P, Halank M, et al. Pulmonary hypertension due to lung diseases: updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol. 2018;272S:63–8. https://doi.org/10.1016/j.ijcard.2018.08.043

[45]

Waxman A, Restrepo‐Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021;384(4):325–34. https://doi.org/10.1056/NEJMoa2008470

[46]

Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Maher TM, Nair A, et al. Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis. Eur Respir J. 2017;50(1):1700379. https://doi.org/10.1183/13993003.00379-2017

[47]

Kim HJ, Snyder LD, Neely ML, Hellkamp AS, Hotchkin DL, Morrison LD, et al. Clinical outcomes of patients with combined idiopathic pulmonary fibrosis and emphysema in the IPF‐PRO Registry. Lung. 2022;200(1):21–9. https://doi.org/10.1007/s00408-021-00506-x

[48]

Sugino K, Ishida F, Kikuchi N, Hirota N, Sano G, Sato K, et al. Comparison of clinical characteristics and prognostic factors of combined pulmonary fibrosis and emphysema versus idiopathic pulmonary fibrosis alone. Respirology. 2014;19(2):239–45. https://doi.org/10.1111/resp.12207

[49]

Zhang L, Zhang C, Dong F, Song Q, Chi F, Liu L, et al. Combined pulmonary fibrosis and emphysema: a retrospective analysis of clinical characteristics, treatment and prognosis. BMC Pulm Med. 2016;16(1):137. https://doi.org/10.1186/s12890-016-0300-7

[50]

Ozawa Y, Suda T, Naito T, Enomoto N, Hashimoto D, Fujisawa T, et al. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology. 2009;14(5):723–8. https://doi.org/10.1111/j.1440-1843.2009.01547.x

[51]

Vancheri C, Failla M, Crimi N, Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J. 2010;35(3):496–504. https://doi.org/10.1183/09031936.00077309

[52]

Karampitsakos T, Spagnolo P, Mogulkoc N, Wuyts WA, Tomassetti S, Bendstrup E, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: a retrospective multicentre study in Europe. Respirology. 2023;28(1):56–65. https://doi.org/10.1111/resp.14363

[53]

Tomassetti S, Gurioli C, Ryu JH, Decker PA, Ravaglia C, Tantalocco P, et al. The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest. 2015;147(1):157–64. https://doi.org/10.1378/chest.14-0359

[54]

Kim H, Yoo H, Pyo H, Ahn YC, Noh JM, Ju SG, et al. Impact of underlying pulmonary diseases on treatment outcomes in early‐stage non‐small cell lung cancer treated with definitive radiotherapy. Int J Chronic Obstr Pulm Dis. 2019;14:2273–81. https://doi.org/10.2147/COPD.S210759

[55]

Vasakova M, Sterclova M, Moğulkoç N, Lewandowska K, Müller V, Hajkova M, et al. Healthy survivor bias in patients with idiopathic pulmonary fibrosis in clinical registries. Eur Respir J. 2021;58(Suppl 65):PA477. https://doi.org/10.1183/13993003.congress-2021.pa477

[56]

Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8. https://doi.org/10.1093/aje/kwk052

[57]
D’Agostino RB, Nam BH. Evaluation of the performance of survival analysis models: discrimination and calibration measures. In: Handbook of statistics. Amsterdam: Elsevier; 2003. p. 1–25. https://doi.org/10.1016/s0169-7161(03)23001-7
[58]

Topoluk N, Patel JJ. The implications of using BMI alone in outcomes research. Chest. 2022;162(4):e204. https://doi.org/10.1016/j.chest.2022.06.043

[59]

Bleeker SE, Moll HA, Steyerberg EW, Donders ART, Derksen‐Lubsen G, Grobbee DE, et al. External validation is necessary in prediction research: a clinical example. J Clin Epidemiol. 2003;56(9):826–32. https://doi.org/10.1016/s0895-4356(03)00207-5

[60]

Zhang X, Ren Y, Xie B, Wang S, Geng J, He X, et al. External validation of the GAP model in Chinese patients with idiopathic pulmonary fibrosis. Clin Res J. 2023;17(9):831–40. https://doi.org/10.1111/crj.13564

[61]

Lee SH, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, et al. Predicting survival of patients with idiopathic pulmonary fibrosis using GAP score: a nationwide cohort study. Respir Res. 2016;17(1):131. https://doi.org/10.1186/s12931-016-0454-0

Medicine Advances
Pages 336-348
Cite this article:
Mohamed R, Sangani RG, Kamal KM, et al. Development of a local nomogram‐based scoring system for predicting overall survival in idiopathic pulmonary fibrosis: A rural appalachian experience. Medicine Advances, 2024, 2(4): 336-348. https://doi.org/10.1002/med4.86
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return