Water, an indispensable component of life, has in recent times been associated with the distribution/spread of gastro‐enteric diseases especially as safe water is a concern in Southern, Eastern and Western African developmental regions.
This study evaluated the molecular fingerprints of potential gastro‐enteric associated virulence genes of 58 somatic antigen non‐agglutinating Vibrio cholerae 1/139 (SA‐NAG‐Vc‐1/139) strains from domestic water sources. Strains were isolated and characterized applying both culture‐based‐microbiological techniques and molecular‐fingerprinting of target‐specific identification genes using simplex/multiplex PCR assay and ERIC‐PCR fingerprints.
Our study revealed diverse gene‐based indices vis T3SS (29/58, 50.00%), T6SS (33/58, 56.9%), rtxA (37/58, 63.79%), rtxC (12/58, 20.69%), NAG‐stn/sto (13/58, 22.41%), prtV (17/58, 29.31%), hlyA (41/58, 70.69%), nanH (40/58, 68.97%), mshA (44/58, 75.86%), chxA (37/58, 63.79%), hapA (17/58, 29.31%), ace (22/58, 37.93%), and cep (20/58, 34.48%) etc. Such results show that 53.45% (31/58) of isolates harboured more than three virulence associated genes while nanH, mshA, chxA, T6SS, T3SS, rtxA, hlyA, mshA, chxA, ace and cep fingerprints were detected predominantly with corresponding ilea‐loop test positive strains. ERIC‐PCR also showed multiple target specific repetitive intergenic consensus sequence regions ranging from 2 to 8.
This is an indication that the previously known non‐pathogenic strains now harbour potential gastro‐enteric virulence which may be controlled by more than one virulent gene dynamics. It also suggests a current potential shift in the virulence dynamics of V. cholerae strains recovered from the study area and a re‐evaluated view of the previously non‐pathogenic V. cholerae strains. Furthermore, the presence of such genes in SA‐NAG‐Vc‐1/139 strains indicates a potential public health related concern. Although these detected potential gastro‐enteric associated genes may be implicated in sporadic gastroenteritis, our result has re‐emphasized their probable public health concern as they may be involved in both endemic and severe gastroenteritis cases, which suggests the need for water routine monitoring or surveillance.
Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Neglected Trop Dis. 2015;9(6):e0003832. https://doi.org/10.1371/journal.pntd.0003832
Gxalo O, Digban TO, Igere BE, Olapade OA, Okoh AI, Nwodo UU. Virulence and antibiotic resistance characteristics of vibrio isolates from rustic environmental freshwaters. Front Cell Infect Microbiol. 2021;11:732001. https://doi.org/10.3389/fcimb.2021.732001
Igere BE, Okoh AI, Nwodo UU. Non‐serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol. 2022a;204(6):323. https://doi.org/10.1007/s00203‐022‐02866‐1
Onohuean H, Igere BE. Occurrence, antibiotic susceptibility and genes encoding antibacterial resistance of salmonella spp. and Escherichia coli from milk and meat sold in markets of Bushenyi District, Uganda. Microbiol Insights. 2022;15:11786361221088992. https://doi.org/10.1177/11786361221088992
Maikalu RB, Igere BE, Odjadjare EE. Enterobacter species distribution, emerging virulence and multiple antibiotic resistance dynamics in effluents: a countrified spread‐hub and implications of abattior release. Total Environment Research Themes. 2023;8:100074. https://doi.org/10.1016/j.totert.2023.100074
Igere BE, Igolukumo BB, Eduamodu C, Odjadjare EO. Multi‐drug resistant Aeromonas species in annelida: an evidence of pathogen harbouring leech in recreation water nexus of Oghara Nigeria environs. Scientia Africana. 2021;20(2):145–66. https://doi.org/10.4314/sa.v20i2.13
Monir MM, Hossain T, Morita M, Ohnishi M, Johura FT, Sultana M, et al. Genomic characteristics of recently recognized vibrio cholerae El Tor lineages associated with cholera in Bangladesh, 1991 to 2017. Microbiol Spectr. 2022;10(2):e0039122. https://doi.org/10.1128/spectrum.00391‐22
Monir MM, Islam MT, Mazumder R, Mondal D, Nahar KS, Sultana M, et al. Genomic attributes of vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh. Nat Commun. 2023;14(1):1154. [Internet]. https://doi.org/10.1038/s41467-023-36687-7
Bhandari M, Rathnayake IU, Huygens F, Jennison AV. Clinical and environmental vibrio cholerae non‐O1, non‐O139 strains from Australia have similar virulence and antimicrobial resistance gene profiles. Microbiol Spectr. 2023;11(1):e0263122. https://doi.org/10.1128/spectrum.02631-22
Shackleton D, Memon FA, Nichols G, Phalkey R, Chen AS. Mechanisms of cholera transmission via environment in India and Bangladesh: state of the science review. Rev Environ Health. 2024;39(2):313–29. https://doi.org/10.1515/reveh-2022-0201
Shigematsu M, Kaufmann ME, Charlett A, Niho Y, Pitt TL. An epidemiological study of plesiomonas shigelloides diarrhoea among Japanese travellers. Epidemiol Infect. 2000;125(3):523–30. https://doi.org/10.1017/s0950268800004817
González‐Rey C, Belin AM, Jörbeck H, Norman M, Krovacek K, Henriques B, et al. RAPD‐PCR and PFGE as tools in the investigation of an outbreak of beta‐haemolytic streptococcus group A in a Swedish hospital. Comp Immunol Microbiol Infect Dis. 2003;26(1):25–35. https://doi.org/10.1016/s0147-9571(02)00019-x
González‐Rey C, Siitonen A, Pavlova A, Ciznar I, Svenson SB, Krovacek K. Molecular evidence of plesiomonas shigelloides as a possible zoonotic agent. Folia Microbiol. 2011;56(2):178–84. https://doi.org/10.1007/s12223-011-0032-2
Igere BE, Okoh AI, Nwodo UU. Genetic characterization of non‐O1/non‐O139 Vibrio cholerae mobilome: a strategy for 2 understanding and discriminating emerging environmental bacterial. J. of Biological Research‐Bollettino della Società Italiana di Biologia Sperimentale. 2023;96(2).
Yong L, Guanpin Y, Hualei W, Jixiang C, Xianming S, Guiwei Z, et al. Design of vibrio 16S rRNA gene specific primers and their application in the analysis of seawater vibrio community. J Ocean Univ China. 2006;5(2):157–64. https://doi.org/10.1007/bf02919216
Alam A, Miller KA, Chaand M, Butler JS, Dziejman M. Identification of vibrio cholerae type Ⅲ secretion system effector proteins. Infect Immun. 2011;79(4):1728–40. https://doi.org/10.1128/iai.01194-10
Aydanian A, Tang L, Chen Y, Morris JJG, Olsen P, Johnson JA, et al. Genetic relatedness of selected clinical and environmental non‐O1/O139 vibrio cholerae. Int J Infect Dis. 2015;37:152–8. https://doi.org/10.1016/j.ijid.2015.07.001
Marin MA, Thompson CC, Freitas FS, Fonseca EL, Aboderin AO, Zailani SB, et al. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non‐O1/non‐O139 Vibrio cholerae. PLoS Neglected Trop Dis. 2013;7(2):e2049. https://doi.org/10.1371/journal.pntd.0002049
Chow KH, Ng TK, Yuen KY, Yam W. Detection of RTX toxin gene in vibrio cholerae by PCR. J Clin Microbiol. 2001;39(7):2594–7. https://doi.org/10.1128/jcm.39.7.2594-2597.2001
Singh DV, Matte MH, Matté GR, Jiang S, Sabeena F, Shukla BN, et al. Molecular analysis of vibrio cholerae O1, O139, non‐O1, and non‐O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol. 2001;67(7):3331. https://doi.org/10.1128/aem.67.7.3331-3331.2001
Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, et al. Incidence, virulence factors, and clonality among clinical strains of non‐O1, non‐O139 vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol. 2009;47(4):1087–95. https://doi.org/10.1128/jcm.02026-08
Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR. Detection, isolation, and identification of vibrio cholerae from the environment. Curr Protoc in Microbiol. 2012;26(1):6A. https://doi.org/10.1002/9780471729259.mc06a05s26
Ferdous J, Sultana R, Rashid RB, Tasnimuzzaman M, Nordland A, Begum A, et al. A comparative analysis of vibrio cholerae contamination in point‐of‐drinking and source water in a low‐income urban community, Bangladesh. Front Microbiol. 2018;9:489. https://doi.org/10.3389/fmicb.2018.00489
Rivera IN, Chun J, Huq A, Sack RB, Colwell RR. Genotypes associated with virulence in environmental isolates of vibrio cholerae. Appl Environ Microbiol. 2001;67(6):2421–9. https://doi.org/10.1128/aem.67.6.2421-2429.2001
Rajpara N, Vinothkumar K, Mohanty P, Singh AK, Singh R, Sinha R, et al. Synergistic effect of various virulence factors leading to high toxicity of environmental V. cholerae non‐O1/non‐O139 isolates lacking ctx gene: comparative study with clinical strains. PLoS One. 2013;8(9):e76200. https://doi.org/10.1371/journal.pone.0076200
Jagadeeshan S, Kumar P, Abraham WP, Thomas S. Multiresistant vibrio cholerae non‐O1/non‐O139 from waters in South India: resistance patterns and virulence‐associated gene profiles. J Basic Microbiol. 2009;49(6):538–44. https://doi.org/10.1002/jobm.200900085
Teh CS, Thong KL, Ngoi ST, Ahmad N, Nair GB, Ramamurthy T. Molecular characterization of serogrouping and virulence genes of Malaysian vibrio cholerae isolated from different sources. J Gen Appl Microbiol. 2009;55(6):419–25. https://doi.org/10.2323/jgam.55.419
O'Shea YA, Finnan S, Reen FJ, Morrissey JP, O'Gara F, Boyd EF. The vibrio seventh pandemic island‐Ⅱ is a 26· 9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43· 4 kb genomic island in V. vulnificus. Microbiology. 2004;150(12):4053–63.
Fendri I, Ben Hassena A, Grosset N, Barkallah M, Khannous L, Chuat V, et al. Genetic diversity of food‐isolated salmonella strains through pulsed field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus (ERIC‐PCR). PLoS One. 2013;8(12):e81315. https://doi.org/10.1371/journal.pone.0081315
Igere BE, Okoh AI, Nwodo UU. Lethality of resistant/virulent environmental vibrio cholerae in wastewater release: an evidence of emerging virulent/antibiotic‐resistant‐bacteria contaminants of public health concern. Environmental Challenges. 2022b;7:100504. https://doi.org/10.1016/j.envc.2022.100504
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA‐NAG‐Vibrio cholerae: an evidence of emerging/evolving patho‐significant strain in municipal domestic water sources. Ann Microbiol. 2022c;72:1–3. https://doi.org/10.1186/s13213-021-01661-5
Chatterjee HN. Reduction of cholera mortality by the control of bowel symptoms and other complications. Postgrad Med. 1957;33(380):278–84. https://doi.org/10.1136/pgmj.33.380.278
Maugeri TL, Carbone M, Fera MT, Gugliandolo C. Detection and differentiation of vibrio vulnificus in seawater and plankton of a coastal zone of the Mediterranean Sea. Res Microbiol. 2006;157(2):194–200. https://doi.org/10.1016/j.resmic.2005.06.007
Mishra A, Taneja N, Sharma RK, Kumar R, Sharma NC, Sharma M. Amplified fragment length polymorphism of clinical and environmental vibrio cholerae from a freshwater environment in a cholera‐endemic area, India. BMC Infect Dis. 2011;11:249. https://doi.org/10.1186/1471-2334-11-249
Saitou N, Nei M. The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ. A type Ⅲ secretion system in vibrio cholerae translocates a formin/spire hybrid‐like actin nucleator to promote intestinal colonization. Cell Host Microbe. 2007;1(2):95–107. https://doi.org/10.1016/j.chom.2007.03.005
Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. Distribution of genes for virulence and ecological fitness among diverse vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol. 2008;27(7):347–55. https://doi.org/10.1089/dna.2008.0737
Madhusudana RB, Surendran PK. Detection of ctx gene positive non‐O1/non‐O139 V. cholerae in shrimp aquaculture environments. J Food Sci Technol. 2013;50(3):496–504. https://doi.org/10.1007/s13197-011-0374-4
Lu B, Zhou H, Li D, Li F, Zhu F, Cui Y, et al. The first case of bacteraemia due to non‐O1/non‐O139 vibrio cholerae in a type 2 diabetes mellitus patient in mainland China. Int J Infect Dis. 2014;25:116–8. https://doi.org/10.1016/j.ijid.2014.04.015
Kamareddine L, Wong AC, Vanhove AS, Hang S, Purdy AE, Kierek‐Pearson K, et al. Activation of vibrio cholerae quorum sensing promotes survival of an arthropod host. Nature microbiology. 2018;3(2):243–52. https://doi.org/10.1038/s41564-017-0065-7
Bennett SD, Otieno R, Ayers TL, Odhiambo A, Faith SH, Quick R. Acceptability and use of portable drinking water and hand washing stations in health care facilities and their impact on patient hygiene practices, western Kenya. PLoS One. 2015;10(5):e0126916. https://doi.org/10.1371/journal.pone.0126916
Hao Y, Wang Y, Bi Z, Sun B, Jin Y, Bai Y, et al. A case of non‐O1/non‐O139 vibrio cholerae septicemia and meningitis in a neonate. Int J Infect Dis. 2015;35:117–9. https://doi.org/10.1016/j.ijid.2015.05.004
Janda JM, Newton AE, Bopp CA. Vibriosis. Clin Lab Med. 2015;35(2):273–88. https://doi.org/10.1016/j.cll.2015.02.007
Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross‐sectional study. Antimicrob Resist Infect Control. 2016;5:23. https://doi.org/10.1186/s13756-016-0122-7
Fernández‐Abreu A, Bravo‐Fariñas L, Rivero‐Navea G, Cabrera‐Cantelar N, Nuñez‐Fernández FA, Cruz‐Infante Y, et al. Determinants of virulence and antimicrobial susceptibility in Non‐O1, Non‐O139 vibrio cholerae isolates. MEDICC Review. 2017;19:21–5.
Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, et al. Genomic characterization of non‐O1, non‐O139 vibrio cholerae reveals genes for a type Ⅲ secretion system. Proc Natl Acad Sci USA. 2005;102(9):3465–70. https://doi.org/10.1073/pnas.0409918102
Temba D, Namkinga L, Moyo S, Lyimo T, Lugomela C. Occurrence of pathogenic vibrio cholerae serogroups 01 and 0139 in some estuaries of Tanzania. Tanzan J Sci. 2018;44(1):145–58.
Tam VC, Suzuki M, Coughlin M, Saslowsky D, Biswas K, Lencer WI, et al. Functional analysis of VopF activity required for colonization in vibrio cholerae. mBio. 2010;1(5):10–128. https://doi.org/10.1128/mbio.00289-10
Igere BE, Okoh AI, Nwodo UU. Antibiotic susceptibility testing (AST) reports: a basis for environmental/epidemiological surveillance and infection control amongst environmental vibrio cholerae. Int J Environ Res Publ Health. 2020a;17(16):5685. https://doi.org/10.3390/ijerph17165685
Igere BE, Okoh AI, Nwodo UU. Wastewater treatment plants and release: the vase of Odin for emerging bacterial contaminants, resistance and determinant of environmental wellness. Emerging Contam. 2020b;6:212–24. https://doi.org/10.1016/j.emcon.2020.05.003
Igere BE, Onohuean H, Igbinosa EO. Polymyxin sensitivity/resistance cosmopolitan status, epidemiology and prevalence among O1/O139 and non‐O1/non‐O139 vibrio cholerae: a meta‐analysis. Infectious Medicine. 2023;2(4):283–93. https://doi.org/10.1016/j.imj.2023.11.004
Igere BE, Onohuean H, Nwodo UU. Water bodies are potential hub for spatio‐allotment of cell‐free nucleic acid and pandemic: a pentadecadal (1969–2021) critical review on particulate cell‐free DNA reservoirs in water nexus. Bull Natl Res Cent. 2022;46(1):56. https://doi.org/10.1186/s42269-022-00750-y
Chen C, Yang X, Shen X. Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front Microbiol. 2019;10:1484. https://doi.org/10.3389/fmicb.2019.01484
Murphy RA, Boyd EF. Three pathogenicity islands of vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol. 2008;190(2):636–47. https://doi.org/10.1128/jb.00562-07
Shin OS, Uddin T, Citorik R, Wang JP, Della Pelle P, Kradin RL, et al. LPLUNC1 modulates innate immune responses to vibrio cholerae. JID (J Infect Dis). 2011;204(9):1349–57. https://doi.org/10.1093/infdis/jir544
Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews‐Polymenis H, Santiviago CA, et al. Only one of the two type Ⅵ secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 2014;45(1):2. https://doi.org/10.1186/1297-9716-45-2
Ringel PD, Hu D, Basler M. The role of type Ⅵ secretion system effectors in target cell lysis and subsequent horizontal gene transfer. Cell Rep. 2017;21(13):3927–40. https://doi.org/10.1016/j.celrep.2017.12.020
Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, et al. The Vibrio cholerae type Ⅵ secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci USA. 2018;115(16):E3779–87. https://doi.org/10.1073/pnas.1720133115
Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. Type Ⅵ secretion system dynamics reveals a novel secretion mechanism in Pseudomonas aeruginosa. J Bacteriol. 2018;200(11):10–128. https://doi.org/10.1128/jb.00744-17
Sana TG, Lugo KA, Monack DM. T6SS: the bacterial “fight club” in the host gut. PLoS Pathog. 2017;13(6):e1006325. https://doi.org/10.1371/journal.ppat.1006325
Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, et al. Characterization of multiple type‐Ⅵ secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra‐intestinal pathogenic Escherichia coli. Virulence. 2019;10(1):118–32. https://doi.org/10.1080/21505594.2019.1573491
Fu Y, Ho BT, Mekalanos JJ. Tracking vibrio cholerae cell‐cell interactions during infection reveals bacterial population dynamics within intestinal microenvironments. Cell Host Microbe. 2018;23(2):274–81. https://doi.org/10.1016/j.chom.2017.12.006
Chokesajjawatee N, Zo YG, Colwell RR. Determination of clonality and relatedness of vibrio cholerae isolates by genomic fingerprinting, using long‐range repetitive element sequence‐based PCR. Appl Environ Microbiol. 2008;74(17):5392–401. https://doi.org/10.1128/aem.00151-08
Waturangi DE, Joanito I, Yogi Y, Thomas S. Use of REP‐and ERIC‐PCR to reveal genetic heterogeneity of vibrio cholerae from edible ice in Jakarta, Indonesia. Gut Pathog. 2012;4:1–9.
Ateba CN, Mbewe M. Determination of the genetic similarities of fingerprints from Escherichia coli O157: H7 isolated from different sources in the North West Province, South Africa using ISR, BOXAIR and REP‐PCR analysis. Microbiol Res. 2013;168(7):438–46. https://doi.org/10.1016/j.micres.2013.02.003
Dutta D, Chowdhury G, Pazhani GP, Guin S, Dutta S, Ghosh S, et al. Vibrio cholerae non‐O1, non‐O139 serogroups and cholera‐like diarrhea, Kolkata, India. Emerg Infect Dis. 2013;19(3):464–7. https://doi.org/10.3201/eid1903.121156
Dalusi L, Saarenheimo J, Lyimo TJ, Lugomela C. Genetic relationship between clinical and environmental vibrio cholerae isolates in Tanzania: a comparison using repetitive extragenic palindromic (REP) and enterobacterial repetitive intergenic consensus (ERIC) fingerprinting approach. Afr J Microbiol Res. 2015;9(7):455–62. https://doi.org/10.5897/ajmr2014.7307