AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective | Open Access

The expanding Asgard archaea and their elusive relationships with Eukarya

Violette Da Cunha1,Morgan Gaïa2Patrick Forterre1,3( )
CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
Département de Microbiologie, Institut Pasteur, Paris, France

Edited by Wen-Jun Li, Sun Yat-Sen University, China

Show Author Information

Abstract

The discovery of Asgard archaea and the exploration of their diversity over the last 6 years have deeply impacted the scientific community working on eukaryogenesis, rejuvenating an intense debate on the topology of the universal tree of life (uTol). Here, we discuss how this debate is impacted by two recent publications that expand the number of Asgard lineages and eukaryotic signature proteins (ESPs). We discuss some of the main difficulties that can impair the phylogenetic reconstructions of the uTol and suggest that the debate about its topology is not settled. We notably hypothesize the existence of horizontal gene transfers between ancestral Asgards and proto-eukaryotes that could result in the observed abnormal behaviors of some Asgard ESPs and universal marker proteins. This hypothesis is relevant regardless of the scenario considered regarding eukaryogenesis. It implies that the Asgards were already diversified before the last eukaryotic common ancestor and shared the same biotopes with proto-eukaryotes. We suggest that some Asgards might be still living in symbiosis today with modern Eukarya.

References

1

Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.

2

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.

3

Spang A, Eme L, Saw JH, Caceres EF, Zaremba-Niedzwiedzka K, Lombard J, et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 2018;14:e1007080.

4

Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol. 2020;4:138–47.

5

Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 2017;13:e1006810.

6

Da Cunha V, Gaia M, Nasir A, Forterre P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 2018;14:e1007215.

7

Nasir A, Mughal F, Caetano-Anollés G. The tree of life describes a tripartite cellular world. BioEssays. 2021;43:e2000343.

8

Forterre P. The universal tree of life: an update. Front Microbiol. 2015;6:1–18.

9
Gaïa M, Da Cunha V, Forterre P. The tree of life. In: Rampelotto PH, editor. Molecular Mechanisms of Microbial Evolution, Grand Challenges in Biology and Biotechnology. Springer; 2018.
10

Seitz KW, Lazar CS, Hinrichs K-U, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.

11

Cai M, Richter-Heitmann T, Yin X, Huang WC, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.

12

Farag IF, Zhao R, Biddle JF. “Sifarchaeota,” a novel Asgard Phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Microbiol. 2021;87:1–12.

13

Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature. 2021;593:553–7.

14

Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2021. https://doi.org/10.1007/s11427-021-1969-6

15

Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.

16

Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. bioRxiv. 2021. https://doi.org/10.1101/2021.02.19.431964

17

Jay ZJ, Beam JP, Dlakić M, Rusch DB, Kozubal MA, Inskeep WP. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol. 2018;3:732–40.

18

Tahon G, Ettema TJG. Expanding Archaeal diversity and phylogeny: past and future. Annu Rev Microbiol. 2021;75:359–81.

19

Nasir A, Kim KM, Da Cunha V, Caetano-Anollés G. Arguments reinforcing the three-domain view of diversified cellular life. Archaea. 2016;2016:1851865.

20

Rangel LT, Fournier GP. Fast-evolving alignment sites are highly informative for reconstructions of deep Tree of Life phylogenies. bioRxiv. 2019. https://doi.org/10.1101/835504

21

Martinez-Gutierrez CA, Aylward FO. Phylogenetic signal, congruence, and uncertainty across Bacteria and Archaea. Mol Biol Evol. 2021;38:5514–27.

22

Caetano-Anollés G, Mughal F. The Tree of Life describes a tripartite cellular world: neglected support from genome structure and codon usage and the fallacy of alignment-dependent phylogenetic interpretations. BioEssays. 2021;43:e2100130.

23
Ranwez V, Chantret NN, Ranwez V, Strengths NC, Sequence M, Ranwez V, et al. Strengths and limits of multiple sequence alignment and filtering methods. In: Scornavacca C, Delsuc F, Galtier N, editors. Phylogenetics in the Genomic Era Chapter 2.2. 2020. p. 2.2:1–2:36.
24

Gouy R, Baurain D, Philippe H. Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc Lond B. 2015;370:20140329.

25

Berkemer SJ, McGlynn SE. A new analysis of Archaea–Bacteria domain separation: variable phylogenetic distance and the tempo of early evolution. Mol Biol Evol. 2020;27:2332–40.

26

Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C, Offre P, et al. An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes. eLife. 2022;11:e66695.

27

Brochier-Armanet C, Forterre P, Gribaldo S. Phylogeny and evolution of the Archaea:2 one hundred genomes later. Curr Opin Microbiol. 2011;14:274–81.

28

Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M, Gaïa M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA. 2019;116:19535–92.

29

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

30

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

31

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.

32

Darriba D, Taboada GL, Doallo R, Posada D. ProtTest-HPC: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.

33

Garg SG, Kapust N, Lin W, Knopp M, Tria FDK, Nelson-Sathi S, et al. Anomalous phylogenetic behavior of ribosomal proteins in metagenome-assembled Asgard Archaea. Genome Biol Evol. 2021;13:evaa238.

34

Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.

35

Hernandez AM, Ryan JF. Six-state amino acid recoding is not an effective strategy to offset compositional heterogeneity and saturation in phylogenetic analyses. Syst Biol. 2021;70:1200–12.

36

Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, et al. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst Biol. 2015;64:778–91.

37

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 2017;15:711–23.

38

Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal—unique contribution to protein families of the eukaryotic common ancestor was 0.3. Genome Biol Evol. 2021;13:evab085.

39

Schlieper D, Oliva MA, Andreu JM, Löwe J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA. 2005;102:9170–5.

40

Shiratori T, Suzuki S, Kakizawa Y, Ishida K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun. 2019;10:5529.

41

Martin-Galiano AJ, Oliva MA, Sanz L, Bhattacharyya A, Serna M, Yebenes H, et al. Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. J Biol Chem. 2011;286:19789–803.

42

Guljamow A, Jenke-kodama H, Saumweber H, Quillardet P, Frangeul L, Castets AM, et al. Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr Biol. 2007;17:757–9.

43

Stairs CW, Ettema TJG. The Archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr Biol. 2020;30:R521–6.

44

Da Cunha V, Gaia M, Ogata H, Jaillon O, Delmont TO, Forterre P Giant viruses encode actin related proteins. Mol Biol Evol. 2022;39:msac022.

45

Best A, Kwaik YA. Evolution of the arsenal of Legionella pneumophila effectors to modulate protist hosts. mBio. 2018;9:e01313–8.

46

Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol. 2021;31:R862–77.

47

Preston CM, Wu KY, Molinski TF, DeLong EF. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA. 1996;93:6241–6.

48

Thiaville PC, Iwata-Reuyl D, DeCrécy-Lagard V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA. RNA Biol. 2014;11:1529–39.

49

Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, et al. An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Nucleic Acids Res. 2007;35:6042–51.

50

Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, et al. Complex evolutionary history of translation elongation 2 and diphthamide biosynthesis in Archaea and Parabasalids. Genome Biol Evol. 2018;10:2380–93.

51

Avcı B, Brandt J, Nachmias D, Elia N, Albertsen M, Ettema TJG, et al. Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME J. 2022;16:606–10.

52

Rambo IM, Anda VDe, Langwig MV, Baker BJ. Unique viruses that infect Archaea related to eukaryotes. bioRxiv. 2021. https://doi.org/10.1101/2021.07.29.454249

53

Floc'h K, Lacroix F, Servant P, Wong YS, Kleman JP, Bourgeois D, et al. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nat Commun. 2019;10:3815.

54

Forterre P, Gadelle D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res. 2009;37:679–92.

55

Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas CS. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res. 2020;48:10142–56.

56

Pan J, Lian K, Sarre A, Leiros HKS, Williamson A. Bacteriophage origin of some minimal ATP-dependent DNA ligases: a new structure from Burkholderia pseudomallei with striking similarity to Chlorella virus ligase. Sci Rep. 2021;11:18693.

57

Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, et al. Viruses of Asgard archaea. bioRxiv. 2021. https://doi.org/10.1101/2021.07.29.453957

58

Tamarit D, Caceres EF, Krupovic M, Nijland R, Eme L, Robinson P, et al. A closed Candidatus Odinarchaeum genome exposes Asgard archaeal viruses. bioRxiv. 2021. https://doi.org/10.1101/2021.09.01.458545

59

Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol. 2018;2:697–704.

60

Forterre P. The common ancestor of archaea and eukarya was not an archaeon. Archaea. 2013;2013:372396.

61

Forterre P, Gaia M, Da Cunha V. Engineered bacterium fuels evolution debate. Nature. 2019;571:326.

62

Novoa EM, Pavon-Eternod M, Pan T, Ribas De Pouplana L. A role for tRNA modifications in genome structure and codon usage. Cell. 2012;149:202–13.

mLife
Pages 3-12
Cite this article:
Da Cunha V, Gaïa M, Forterre P. The expanding Asgard archaea and their elusive relationships with Eukarya. mLife, 2022, 1(1): 3-12. https://doi.org/10.1002/mlf2.12012

254

Views

4

Downloads

11

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 30 December 2021
Accepted: 10 February 2022
Published: 24 March 2022
© 2022 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return