AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (748.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Desulfovibrio vulgaris as a model microbe for the study of corrosion under sulfate-reducing conditions

Toshiyuki Ueki1Derek R. Lovley1,2 ( )
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Electrobiomaterials Institute, Northeastern University, Shenyang, China
Department of Microbiology University of Massachusetts, Amherst, MA, USA

Edited by Hailiang Dong, Miami University, USA

Show Author Information

Abstract

Corrosion of iron-containing metals under sulfate-reducing conditions is an economically important problem. Microbial strains now known as Desulfovibrio vulgaris served as the model microbes in many of the foundational studies that developed existing models for the corrosion of iron-containing metals under sulfate-reducing conditions. Proposed mechanisms for corrosion by D. vulgaris include: (1) H2 consumption to accelerate the oxidation of Fe0 coupled to the reduction of protons to H2; (2) production of sulfide that combines with ferrous iron to form iron sulfide coatings that promote H2 production; (3) moribund cells release hydrogenases that catalyze Fe0 oxidation with the production of H2; (4) direct electron transfer from Fe0 to cells; and (5) flavins serving as an electron shuttle for electron transfer between Fe0 and cells. The demonstrated possibility of conducting transcriptomic and proteomic analysis of cells growing on metal surfaces suggests that similar studies on D. vulgaris corrosion biofilms can aid in identifying proteins that play an important role in corrosion. Tools for making targeted gene deletions in D. vulgaris are available for functional genetic studies. These approaches, coupled with instrumentation for the detection of low concentrations of H2, and proven techniques for evaluating putative electron shuttle function, are expected to make it possible to determine which of the proposed mechanisms for D. vulgaris corrosion are most important.

References

1

Procópio L. The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotechnol Lett. 2020;42:341–56.

2

Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, et al. Microbial corrosion of metals: the corrosion microbiome. Adv Microb Physiol. 2021;78:317–90.

3

Garrett JH. The action of water on lead, H K Lewis, London; 1891.

4

Gaines R. Bacterial activity as a corrosive influence in the soil. J Ind Eng Chem. 1910;2:128–30.

5

von Wolzoge Kühr CAH, van der Vlugt LS. The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water. 1934;18:147–65.

6
Miller JDA, Tiller AK. Microbial corrosion of buried and immersed metal. In: Miller JDA, editor. Microbial aspects of metallurgy. New York, NY: Elsevier; 1970. p. 61–105.
7
Iverson WP. Microbial corrosion of iron. In: Neilands JB, editor. Microbial iron metabolism. New York, NY: Elsevier; 1974. p. 475–513.
8

Bunker HJ. Microbiological experiments in anaerobic corrosion. J Soc Chem Ind. 1939;58:93–100.

9

Butlin KR, Adams ME. Autotrophic growth of sulphate-reducing bacteria. Nature. 1947;160:154–5.

10

Spruit CJP, Wanklyn JN. Iron/sulphide ratios in corrosion by sulphate-reducing bacteria. Nature. 1951;168:951–2.

11

Wanklyn JN, Spruit CJP. Influence of sulphate-reducing bacteria on the corrosion potential of iron. Nature. 1952;169:928–9.

12

Booth GH, Tiller AK. Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Trans Faraday Soc. 1960;56:1689–96.

13

Booth GH. Sulphur bacteria in relation to corrosion. J Appl Bacteriol. 1964;27:174–81.

14

Booth GH, Elford L, Wakerley DS. Corrosion of mild steel by sulphate-reducing bacteria: an alternative mechanism. Br Corros J. 1968;3:242–5.

15

Booth GH, Tiller AK. Cathodic characteristics of mild steel in suspensions of sulphate-reducing bacteria. Corros Sci. 1968;8:583–600.

16

King RA, Miller JDA. Corrosion by the sulphate-reducing bacteria. Nature. 1971;233:491–2.

17

Costello JA. Cathodic depolarization by sulphate-reducing bacteria. S Afr J Sci. 1974;70:202–4.

18

Gaylarde CC, Johnston JM. The effect of Vibrio anguillarum on anaerobic metal corrosion induced by Desulfovibrio vulgaris. Internat Biodet Bull. 1982;18:111–6.

19

Pankhania IP, Moosavi AN, Hamilton WA. Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J Gen Microbiol. 1986;132:3357–65.

20

Cord-Ruwisch R, Widdel F. Corroding iron as a hydrogen source for sulfate reduction in growing cultures of sulfate-reducing bacteria. Appl Microbiol Biotechnol. 1986;25:169–74.

21
Tomei FA, Mitchell R. Development of an alternative method for studying the role of H2-consuming bacteria in the anaerobic oxidation of iron. Proceedings of International Conference on Biologically Induced Corrosion. National Association of Corrosion Engineers, Houston, TX. 1986. p. 309–20
22

Czechowski MH, Chatelus C, Fauque G, Libert-Coquempot MF, Lespinat PA, Berlier Y, et al. Utilization of cathodically-produced hydrogen from mild steel by Desulfovibrio species with different types of hydrogenases. J Ind Microbiol. 1990;6:227–34.

23

Benbouzld-Rollet ND, Conte M, Guezennec J, Prieur D. Monitoring of a Vibrio natriegens and Desulfovibrio vulgaris marine aerobic biofilm on a stainless steel surface in a laboratory tubular flow system. J Appl Bacteriol. 1991;71:244–51.

24

Newman RC, Webster BJ, Kelly RG. The electrochemistry of SRB corrosion and related inorganic phenomena. ISIJ Int. 1991;31:201–9.

25

Moreno DA, de Mele MFL, Ibars JR, Videla HA. Influence of microstructure on the electrochemical behavior of type 410 stainless steel in chloride media with inorganic and biogenic sulfide. Corrosion. 1991;47:2–9.

26

Gomez de Saravia SG, Guiamet PS, de Mele MFL, Videla HA. Biofilm effects and MIC of carbon steel in electrolytic media contaminated with microbial strains isolated from cutting-oil emulsions. Corrosion. 1991;47:687–92.

27

Gaylarde CC. Sulfate-reducing bacteria which do not induce accelerated corrosion. Int Biodeterior Biodegr. 1992;30:331–8.

28

Geiger SL, Ross TJ, Barton LL. Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microsc Res Tech. 1993;25:429–33.

29

Guezennec JG. Cathodic protection and microbially induced corrosion. Int Biodeterior Biodegr. 1994;34:275–88.

30

Dubey RS, Namboodhiri TKG, Upadhyay SN. Microbiologically influenced corrosion of mild steel in cultures of sulphate reducing bacteria. Indian J Chem Technol. 1995;2:327–9.

31

Angell P, White DC. Is metabolic activity by biofilms with sulfate-reducing bacterial consortia essential for long-term propagation of pitting corrosion of stainless steel? J Ind Microbiol. 1995;15:329–32.

32

Angell P, Luo J-S, White DC. Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater. Corros Sci. 1995;37:1085–96.

33

Gómez de Saravia SG, de Mele MFL, Videla HA, Edyvean RGJ. Bacterial biofilms on cathodically protected stainless steel. Biofouling. 1997;11:1–17.

34

Angell P, Machowski WJ, Paul PP, Wall CM, Lyle FF Jr. A multiple chemostat system for consortia studies on microbially influenced corrosion. J Microbiol Methods. 1997;30:173–8.

35

Jayaraman A, Hallock PJ, Carson RM, Lee C-C, Mansfeld FB, Wood TK. Inhibiting sulfate-reducing bacteria in bioflms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol. 1999;52:267–75.

36

McLeod ES, MacDonald R, Brözel VS. Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridisation. Water SA. 2002;28:123–8.

37

Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature. 2004;427:829–32.

38

Zuo R, Ornek D, Syrett BC, Green RM, Hsu C-H, Mansfeld FB, et al. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Appl Microbiol Biotechnol. 2004;64:275–83.

39

Zhang W, Culley DE, Nie L, Scholten JCM. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface. Appl Microbiol Biotechnol. 2007;76:447–57.

40

Caffrey SM, Park HS, Been J, Gordon P, Sensen CW, Voordouw G. Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions. Appl Environ Microbiol. 2008;74:2404–13.

41

González-Rodríguez CA, Rodríguez-Gómez FJ, Genescá-Llongueras J. The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater. Electrochim Acta. 2008;54:86–90.

42

Stadler R, Fuerbeth W, Harneit K, Grooters M, Woelbrink M, Sand W. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochim Acta. 2008;54:91–9.

43

Stadler R, Wei L, Fürbeth W, Grooters M, Kuklinski A. Infuence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater Corros. 2010;61:1008–16.

44

Xu D, Li Y, Gu T. D-Methionine as a biofm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris bioflm and biocorrosion pitting. Mater Corros. 2013;65:837–45.

45

Xu D, Gu T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeter Biodegr. 2014;91:74–81.

46

Abu Bakar A, Noor N, Yahaya N, Mohd Rasol R, Fahmy MK, Fariza SN. Disinfection of sulphate reducing bacteria using ultraviolet treatment to mitigate microbial induced corrosion. J Biol Sci. 2014;14:349–54.

47

Abdullah A, Yahaya N, Noor NM, Rasol RM. Microbial corrosion of API 5L X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing bacteria. J Chem. 2014;2014:130345–7.

48

Rasol RM, Yahaya N, Noor NM, Abdullah A, Rashid ASA. Mitigation of sulfate-reducing bacteria (SRB), Desulfovibrio vulgaris using low frequency ultrasound radiation. J Corros Sci Eng. 2014;17:1–17.

49

Li H, Xu D, Li Y, Feng H, Liu Z, Li X, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS One. 2015;10:e0136183.

50

Zhang P, Xu D, Li Y, Yang K, Gu T. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 2015;101:14–21.

51

Li Y, Zhang P, Cai W, Rosenblatt JS, Raad II, Xu D, et al. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World J Microbiol Biotechnol. 2016;32:23.

52

Chen Y, Torres J, Castaneda H, Ju L-K. Quantitative comparison of anaerobic pitting patterns and damage risks by chloride versus Desulfovibrio vulgaris using a fast pitting-characterization method. Int Biodeterior Biodegr. 2016;109:119–31.

53

Zhang Y, Pei G, Chen L, Zhang W. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface. Biofouling. 2016;32:725–36.

54

Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros Sci. 2017;121:94–104.

55

Nwankwo HU, Olasunkanmi LO, Ebenso EE. Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci Rep. 2017;7:2436.

56

Jia R, Li YD, Xu Y, Gu D. T. Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids. Int Biodeterior Biodegr. 2017;117:97–104.

57

Jia R, Tan JL, Jin P, Blackwood DJ, Xu D, Gu T. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros Sci. 2018;130:1–11.

58

Dou W, Liu J, Cai W, Wang D, Jia R, Chen S, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros Sci. 2019;150:258–67.

59

Sun YP, Yang CT, Yang CG, Xu DK, Li Q, Yin L, et al. Stern–Geary constant for X80 pipeline steel in the presence of different corrosive microorganisms. Acta Metall Sin. 2019;32:1483–9.

60

Scarascia G, Lehmann R, Machuca LL, Morris C, Cheng KY, Kaksonen A, et al. Effect of quorum sensing on the ability of Desulfovibrio vulgaris to form biofilms and to biocorrode carbon steel in saline conditions. Appl Environ Microbiol. 2020;86:e01664–19.

61

Thuy TTT, Kannoorpatti K, Padovan A, Thennadil S. Effect of alkaline artificial seawater environment on the corrosion behaviour of duplex stainless steel 2205. Appl Sci. 2020;10:5043.

62

Shiibashi M, Deng X, Miran W, Okamoto A. Mechanism of anaerobic microbial corrosion suppression by mild negative cathodic polarization on carbon steel. Environ Sci Technol Lett. 2020;7:690–4.

63

Wang D, Liu J, Jia R, Dou W, Kumseranee S, Punpruk S, et al. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros Sci. 2020;177:108993.

64

Wang D, Unsal T, Kumseranee S, Punpruk S, Mohamed ME, Saleh MA, et al. Sulfate reducing bacterium Desulfovibrio vulgaris caused severe microbiologically influenced corrosion of zinc and galvanized steel. Int Biodeterior Biodegr. 2021;157:105160.

65

Tran TTT, Kannoorpatti K, Padovan A, Thennadil S. A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing Desulfovibrio vulgaris. R Soc Open Sci. 2021;8:201577.

66

Unsal T, Wang D, Kumseranee S, Punpruk S, Gu T. D-tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm. World J Microbiol Biotechnol. 2021;37:103.

67

Tran TTT, Kannoorpatti K, Padovan A, Thennadil S. Effect of pH regulation by sulfate-reducing bacteria on corrosion behaviour of duplex stainless steel 2205 in acidic artificial seawater. R Soc Open Sci. 2021;8:200639.

68

Tran TTT, Kannoorpatti K, Padovan A, Thennadil S, Nguyen K. Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow. PLoS One. 2021;16:e0251524.

69

Hamilton WA. Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol. 1985;39:195–217.

70
Beech IB, Sunner JA. Sulphate‐reducing bacteria and their role in corrosion of ferrous materials. In: Barton LL, Hamilton WA, editors. Sulfate‐reducing bacteria: environmental and engineered systems. Cambridge, UK: Cambridge University Press; 2007. p. 459–82.
71

Voordouw G, Shen Y, Harrington CS, Telang AJ, Jack TR, Westlake DWS. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol. 1993;59:4101–14.

72

Li XX, Yang T, Mbadinga SM, Liu JF, Yang SZ, Gu JD, et al. Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front Microbiol. 2017;8:2379.

73

Neria-González I, Wang ET, Ramírez F, Romero JM, Hernández-Rodríguez C. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe. 2006;12:122–33.

74

Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N. Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol. 2016;82:2545–54.

75

Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, et al. Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of Illumina MiSeq sequencing. Front Microbiol. 2017;8:1737.

76

Zhang Y, Ma Y, Duan J, Li X, Wang J, Hou B. Analysis of marine microbial communities colonizing various metallic materials and rust layers. Biofouling. 2019;35:429–42.

77

Feio MJ, Beech IB, Carepo M, Lopes JM, Cheung CW, Franco R, et al. Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe. 1998;4:117–30.

78

Miranda E, Bethencourt M, Botana FJ, Cano MJ, Sánchez-Amaya JM, Corzo A, et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corros Sci. 2006;48:2417–31.

79

Tarasov AL, Borzenkov IA. Sulfate-reducing bacteria of the genus Desulfovibrio from south Vietnam seacoast. Microbiology. 2015;84:553–60.

80

Zarasvand KA, Rai VR. Identification of the traditional and non-traditional sulfate-reducing bacteria associated with corroded ship hull. 3 Biotech. 2016;6:197.

81

Kim BH, Lim SS, Daud WRW, Gadd GM, Chang IS. The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol. 2015;190:395–401.

82

Croese E, Pereira MA, Euverink G-JW, Stams AJM, Geelhoed JS. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Appl Microbiol Biotechnol. 2011;92:1083–93.

83

Pisciotta JM, Zaybak Z, Call DF, Nam J-Y, Logan BE. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol. 2012;78:5212–9.

84

Jafary T, Yeneneh AM, Daud WRW, Al Attar MSS, Al Masani RKM, Rupani PF. Taxonomic classification of sulphate-reducing bacteria communities attached to biocathode in hydrogen-producing microbial electrolysis cell. Int J Environ Sci Technol. 2021. https://doi.org/10.1007/s13762-021-03635-1

85

Keller KL, Wall JD, Chhabra S. Methods for engineering sulfate reducing bacteria of the genus Desulfovibrio. Methods Enzymol. 2011;497:503–17.

86

Wall JD, Zane GM, Juba TR, Kuehl JV, Ray J, Chhabra SR, et al. Deletion mutants, archived transposon library, and tagged protein constructs of the model sulfatereducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiol Resour Announc. 2021;10:e00072–21.

87

Badziong W, Thauer RK, Zeikus JG. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol. 1978;116:41–9.

88

Tang H-Y, Holmes DE, Ueki T, Palacios PA, Lovley DR. Iron corrosion via direct metal-microbe electron transfer. mBio. 2019;10:e00303–19.

89

Tang H-Y, Yang C, Ueki T, Pittman CC, Xu D, Woodard TL, et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. ISME J. 2021;15:3084–93.

90

Liang D, Liu X, Woodard TL, Holmes DE, Smith JA, Nevin KP, et al. Extracellular electron exchange capabilities of Desulfovibrio ferrophilus and Desulfopila corrodens. Environ Sci Technol. 2021;55:16195–203.

91

Lovley DR. Electrotrophy: other microbial species, iron, and electrodes as electron donors for microbial respirations. Bioresour Technol. 2022;345:126553.

92

Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol. 2004;22:554–9.

93

Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol. 2002;184:679–86.

94

Goenka A, Voordouw JK, Lubitz W, Gaertner W, Voordouw G. G. Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans. 2005;33:59–60.

95

Caffrey SM, Park H-S, Voordouw JK, He Z, Zhou J, Voordouw G. Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol. 2007;189:6159–67.

96

Pereira PM, He Q, Valente FM, Xavier AV, Zhou J, Pereira IA, et al. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie Van Leeuwenhoek. 2008;93:347–62.

97

Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, et al. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics. 2012;13:138.

98

Zhang W, Gritsenko MA, Moore RJ, Culley DE, Nie L, Petritis K, et al. A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics. 2006;6:4286–99.

99

Tsurumaru H, Ito N, Mori K, Wakai S, Uchiyama T, Iino T, et al. An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci Rep. 2018;8:1–10.

100

Deutzmann JS, Sahin M, Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio. 2015;6:e00496–15.

101

Philips J, Monballyu E, Georg S, De Paepe K, Prévoteau A, Rabaey K, et al. An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. FEMS Microbiol Ecol. 2019;95:fiy222.

102

Philips J. Extracellular electron uptake by acetogenic bacteria: does H2 consumption favor the H2 evolution reaction on a cathode or metallic iron? Front Microbiol. 2020;10:2997.

103

Chatelus C, Carrier P, Saignes P, Libert MF, Berlier Y, Lespinat PA, et al. Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion. App Environ Microbio. 1987;53:1708–10.

104

Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol. 2022;20:5–19.

105

Glasser NR, Saunders SH, Newman DK. The colorful world of extracellular electron shuttles. Annu Rev Microbiol. 2017;71:731–51.

106

Huang B, Gao S, Xu Z, He H, Pan X. The functional mechanisms and application of electron shuttles in extracellular electron transfer. Curr Microbiol. 2018;75:99–106.

107

Brutinel ED, Gralnick JA. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol. 2012;93:41–8.

108

Van Ommen Kloeke F, Bryant RD. Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe. 1995;1:351–8.

109

Mehta T, Coppi MV, Childers SE, Lovley DR. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(Ⅳ) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol. 2005;71:8634–41.

110

Qian X, Reguera G, Mester T, Lovley DR. Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett. 2007;277:21–7.

111

Leang C, Qian X, Mester T, Lovley DR. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol. 2010;76:4080–4.

112

Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep. 2011;3:211–7.

113

Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv. 2018;4:eaao5682.

114

Deng X, Okamoto A. Electrode potential dependency of single-cell activity identifies the energetics of slow microbial electron uptake process. Front Microbiol. 2018;9:2744.

115

Chatterjee M, Fan Y, Cao F, Jones AA, Pilloni G, Zhang X. Proteomic study of Desulfovibrio ferrophilus IS5 reveals overexpressed extracellular multi-heme cytochrome associated with severe microbiologically influenced corrosion. Sci Rep. 2021;11:15458.

116

Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodard JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.

117

Nevin KP, Lovley DR. Mechanisms for Fe(Ⅲ) oxide reduction in sedimentary environments. Geomicrobiol J. 2002;19:141–59.

118

von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol. 2008;74:615–23.

119

Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105:3968–73.

120

Kotloski NJ, Gralnick JA. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio. 2013;4:e00553–12.

mLife
Pages 13-20
Cite this article:
Ueki T, Lovley DR. Desulfovibrio vulgaris as a model microbe for the study of corrosion under sulfate-reducing conditions. mLife, 2022, 1(1): 13-20. https://doi.org/10.1002/mlf2.12018

355

Views

6

Downloads

22

Crossref

16

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 14 February 2022
Accepted: 07 March 2022
Published: 24 March 2022
© 2022 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return