AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (987.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective | Open Access

The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis

Zhichao Zhou1,#Yang Liu2,3,#Karthik Anantharaman1Meng Li2,3, ( )
Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China

#Zhichao Zhou and Yang Liu contributed equally to this study.

Edited by Li Huang, Institute of Microbiology, Chinese Academy of Sciences, China

Show Author Information

Abstract

The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the “next one” closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.

References

1

Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977;74:5088–90.

2

Lake JA, Henderson E, Oakes M, Clark MW. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA. 1984;81:3786–90.

3

Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA. 1996;93:9188–93.

4

Guy L, Ettema TJG. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 2011;19:580–7.

5

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.

6

Zhou Z, Liu Y, Li M, Gu J-D. Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol. 2018;102:3049–58.

7

Kelly S, Wickstead B, Gull K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc R Soc B. 2011;278:1009–18.

8

Lake JA. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature. 1988;331:184–6.

9

Iwabe N, Kuma K, Kishino H, Hasegawa M, Miyata T. Evolution of RNA polymerases and branching patterns of the three major groups of archaebacteria. J Mol Evol. 1991;32:70–8.

10

Klenk H-P, Palm P, Zillig W. DNA-dependent RNA polymerases as phylogenetic marker molecules. Syst Appl Microbiol. 1993;16:638–47.

11

Liao D, Dennis PP. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences. J Mol Evol. 1994;38:405–19.

12

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990;87:4576–9.

13

Pace NR. Time for a change. Nature. 2006;441:289.

14

Madigan M, Bender K, Buckley D, Sattley W, Stahl D. Brock biology of microorganisms. 15th Global Edition. Boston: Pearson Education; 2018.

15

Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group Ⅱ archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.

16

Carr SA, Jungbluth SP, Eloe-Fadrosh EA, Stepanauskas R, Woyke T, Rappé MS, et al. Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME J. 2019;13:1457–68.

17

Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol. 1999;65:4375–84.

18

Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA. 2008;105:8102–7.

19

Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.

20

Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 2011;39:3204–23.

21

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.

22

Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366(2):fnz008.

23

He C, Keren R, Whittaker ML, Farag IF, Doudna JA, Cate JHD, et al. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat Microbiol. 2021;6:354–65.

24

Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.

25

Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci USA. 2017;114:E4602–11.

26

Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier-Armanet C. Extreme halophilic archaea derive from two distinct methanogen Class Ⅱ lineages. Mol Phylogenet Evol. 2018;127:46–54.

27

Jay ZJ, Beam JP, Dlakić M, Rusch DB, Kozubal MA, Inskeep WP. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol. 2018;3:732–40.

28

De Anda V, Chen L-X, Dombrowski N, Hua Z-S, Jiang H-C, Banfield JF, et al. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun. 2021;12:2404.

29

Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 2014;8:650–9.

30

Jungbluth SP, Amend JP, Rappé MS. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci Data. 2017;4:170037.

31

Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.

32

Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U, Teske AP, et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat Microbiol. 2016;1:16002.

33

Nobu MK, Narihiro T, Kuroda K, Mei R, Liu W-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 2016;10:2478–87.

34

Lazar CS, Baker BJ, Seitz KW, Teske AP. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 2017;11:1118–29.

35

Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 2012;6:81–93.

36

Yin X, Zhou G, Cai M, Zhu Q-Z, Richter-Heitmann T, Aromokeye DA, et al. Catabolic protein degradation in marine sediments confined to distinct archaea. ISME J. 2022;16:1617–26.

37

Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu J-D, et al. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J. 2018;13:885–901.

38

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–94.

39

Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.

40

Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol. 2022;7:1702–8.

41

Koonin EV. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc, B. 2015;370:20140333.

42

Williams TA, Foster PG, Nye TMW, Cox CJ, Embley TM. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B. 2012;279:4870–9.

43

Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.

44

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.

45

Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature. 2021;593:553–7.

46

Liu Y, Zhou Z, Pan J, Baker BJ, Gu J-D, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.

47

Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.

48

Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.

49

Seitz KW, Lazar CS, Hinrichs K-U, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.

50

Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 2021;1:30.

51

Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol. 2016;33:1528–41.

52

Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee J-H, Minh BQ, et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat Commun. 2020;11:3939.

53

Martinez-Gutierrez CA, Aylward FO. Phylogenetic signal, congruence, and uncertainty across bacteria and archaea. Mol Biol Evol. 2021;38:5514–27.

54

Liu Y, Li M. The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea. mLife. 2022;1:218–22.

55

Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.

56

Lindås A-C, Karlsson EA, Lindgren MT, Ettema TJG, Bernander R. A unique cell division machinery in the Archaea. Proc Natl Acad Sci USA. 2008;105:18942–6.

57

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 2017;15:711–23.

58

Lu Z, Fu T, Li T, Liu Y, Zhang S, Li J, et al. Coevolution of eukaryote-like Vps4 and ESCRT-Ⅲ subunits in the Asgard Archaea. mBio. 2020;11:e00417–20.

59

Akıl C, Tran LT, Orhant-Prioux M, Baskaran Y, Manser E, Blanchoin L, et al. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc Natl Acad Sci USA. 2020;117:19904–13.

60

Higuchi A, Shihoya W, Konno M, Ikuta T, Kandori H, Inoue K, et al. Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping. Proc Natl Acad Sci USA. 2021;118:e2016328118.

61

Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-picchoto Y, et al. Asgard ESCRT-Ⅲ and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. ISME J. 2022; https://doi.org/10.1038/s41396-022-01328-2

62

Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, et al. Insights into the evolution of enzymatic specificity and catalysis: from Asgard archaea to human adenylate kinases. Sci Adv. 2022;8:eabm4089.

63

Akıl C, Kitaoku Y, Tran LT, Liebl D, Choe H, Muengsaen D, et al. Mythical origins of the actin cytoskeleton. Curr Opin Cell Biol. 2021;68:55–63.

64

Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.

65

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177–92.

66

Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat Microbiol. 2022;7:962–73.

67

Rambo IM, Langwig MV, Leão P, De Anda V, Baker BJ. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol. 2022;7:953–61.

68

Tamarit D, Caceres EF, Krupovic M, Nijland R, Eme L, Robinson NP, et al. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat Microbiol. 2022;7:948–52.

69

Wu F, Speth DR, Philosof A, Crémière A, Narayanan A, Barco RA, et al. Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol. 2022;7:200–12.

mLife
Pages 374-381
Cite this article:
Zhou Z, Liu Y, Anantharaman K, et al. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. mLife, 2022, 1(4): 374-381. https://doi.org/10.1002/mlf2.12048

261

Views

13

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 01 November 2022
Accepted: 13 November 2022
Published: 18 December 2022
© 2022 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return