AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response

Josephine Rybchuk1,2Wei Xiao1 ( )
Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Toxicology Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Show Author Information

Abstract

The Saccharomyces cerevisiae silencing information regulator (SIR) complex contains up to four proteins, namely Sir1, Sir2, Sir3, and Sir4. While Sir2 encodes a NAD-dependent histone deacetylase, other SIR proteins mainly function as structural and scaffold components through physical interaction with various proteins. The SIR complex displays different conformation and composition, including Sir2 homotrimer, Sir1-4 heterotetramer, Sir2-4 heterotrimer, and their derivatives, which recycle and relocate to different chromosomal regions. Major activities of the SIR complex are transcriptional silencing through chromosomal remodeling and modulation of DNA double-strand-break repair pathways. These activities allow the SIR complex to be involved in mating-type maintenance and switching, telomere and subtelomere gene silencing, promotion of nonhomologous end joining, and inhibition of homologous recombination, as well as control of cell aging. This review explores the potential link between epigenetic regulation and DNA damage response conferred by the SIR complex under various conditions aiming at understanding its roles in balancing cell survival and genomic stability in response to internal and environmental stresses. As core activities of the SIR complex are highly conserved in eukaryotes from yeast to humans, knowledge obtained in the yeast may apply to mammalian Sirtuin homologs and related diseases.

References

1

Ivy JM, Klar AJ, Hicks JB, Ivy JM, Klar AJS, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol. 1986;6:688–702.

2

Oppikofer M, Kueng S, Gasser SM. SIR-nucleosome interactions: structure-function relationships in yeast silent chromatin. Gene. 2013;527:10–25.

3

Gross DS. Sir proteins as transcriptional silencers. Trends Biochem Sci. 2001;26:685–6.

4

Dang W. The controversial world of sirtuins. Drug Discovery Today: Technol. 2014;12:e9–17.

5

Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16:93–105.

6

Wang CL, Landry J, Sternglanz R. A yeast sir2 mutant temperature sensitive for silencing. Genetics. 2008;180:1955–62.

7

Sharp JA, Krawitz DC, Gardner KA, Fox CA, Kaufman PD. The budding yeast-silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev. 2003;17:2356–61.

8

Hsu HC, Wang CL, Wang M, Yang N, Chen Z, Sternglanz R, et al. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev. 2013;27:64–73.

9

Marmorstein R. Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans. 2004;32:904–9.

10

Fritze CE. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 1997;16:6495–509.

11

Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell. 2004;117:441–53.

12

Foss EJ, Gatbonton-Schwager T, Thiesen AH, Taylor E, Soriano R, Lao U, et al. Sir2 suppresses transcription-mediated displacement of Mcm2-7 replicative helicases at the ribosomal DNA repeats. PLoS Genet. 2019;15:e1008138.

13

Armstrong CM, Kaeberlein M, Imai SI, Guarente L. Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity. Mol Biol Cell. 2002;13:1427–38.

14

Cubizolles F, Martino F, Perrod S, Gasser SM. A homotrimer-heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing. Mol Cell. 2006;21:825–36.

15

Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

16

Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570–80.

17

Devare MN, Kim YH, Jung J, Kang WK, Kwon KS, Kim JY. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell. 2020;19:e13151.

18

Ehrentraut S, Hassler M, Oppikofer M, Kueng S, Weber JM, Mueller JW, et al. Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. Genes Dev. 2011;25:1835–46.

19

Connelly JJ, Yuan P, Hsu HC, Li Z, Xu RM, Sternglanz R. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol Cell Biol. 2006;26:3256–65.

20

Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science. 2011;334:977–82.

21

Chang JF, Hall BE, Tanny JC, Moazed D, Filman D, Ellenberger T. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure. 2003;11:637–49.

22

Mills KD, Sinclair DA, Guarente L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 1999;97:609–20.

23

Bordelet H, Costa R, Brocas C, Dépagne J, Veaute X, Busso D, et al. Sir3 heterochromatin protein promotes non-homologous end joining by direct inhibition of Sae2. EMBO J. 2022;41:e108813.

24

Deshpande I, Keusch JJ, Challa K, Iesmantavicius V, Gasser SM, Gut H. The Sir4 H-BRCT domain interacts with phospho-proteins to sequester and repress yeast heterochromatin. EMBO J. 2019;38:e101744.

25

Andrulis ED, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR, et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol Cell Biol. 2002;22:8292–301.

26

Faure G, Jézéquel K, Roisné-Hamelin F, Bitard-Feildel T, Lamiable A, Marcand S, et al. Discovery and evolution of new domains in yeast heterochromatin factor Sir4 and its partner Esc1. Genome Biol Evol. 2019;11:572–85.

27

Rusche LN. Mobile DNAs and switching mating types in yeast. eLife. 2020;9:e58403.

28

Matecic M, Martins-Taylor K, Hickman M, Tanny J, Moazed D, Holmes SG. New alleles of SIR2 define cell-cycle-specific silencing functions. Genetics. 2006;173:1939–50.

29

Liu J, Hong X, Wang L, Liang CY, Liu JP. Sir4 deficiency reverses cell senescence by sub-telomere recombination. Cells. 2021;10:778.

30

Lapetina DL, Ptak C, Roesner UK, Wozniak RW. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes. J Cell Biol. 2017;216:3145–59.

31

Diffley JFX, Stillman B. Transcriptional silencing and lamins. Nature. 1989;342:24.

32

Swygert SG, Senapati S, Bolukbasi MF, Wolfe SA, Lindsay S, Peterson CL. SIR proteins create compact heterochromatin fibers. Proc Natl Acad Sci USA. 2018;115:12447–52.

33

Heude M, Fabre F. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics. 1993;133:489–98.

34

Krassowski T, Kominek J, Shen XX, Opulente DA, Zhou X, Rokas A, et al. Multiple reinventions of mating-type switching during budding yeast evolution. Curr Biol. 2019;29:2555–62.

35

Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics. 1987;116:9–22.

36

Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem. 2003;72:481–516.

37

Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet. 1998;32:561–99.

38

Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 1996;84:633–42.

39

Barbour L, Xiao W. Mating type regulation of cellular tolerance to DNA damage is specific to the DNA post-replication repair and mutagenesis pathway. Mol Microbiol. 2006;59:637–50.

40

Lee SE, Pâques F, Sylvan J, Haber JE. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol. 1999;9:767–70.

41

Lustig AJ. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev. 1998;8:233–9.

42

Conrad MN, Wright JH, Wolf AJ, Zakian VA. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell. 1990;63:739–50.

43

Bourns BD, Alexander MK, Smith AM, Zakian VA. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol. 1998;18:5600–8.

44

Gravel S, Larrivée M, Labrecque P, Wellinger RJ. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 1998;280:741–4.

45

Aparicio OM, Billington BL, Gottschling DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991;66:1279–87.

46

Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol. 2002;22:4167–80.

47

Roy R, Meier B, McAinsh AD, Feldmann HM, Jackson SP. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J Biol Chem. 2004;279:86–94.

48

Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene. 2001;279:1–16.

49

Sosa Ponce ML, Remedios MH, Moradi-Fard S, Cobb JA, Zaremberg V. SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid. J Cell Biol. 2023;222:e202206061.

50

Yeom S, Oh J, Lee JS. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes & Genomics. 2022;44:359–67.

51

Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell. 1997;89:381–91.

52

Krogh BO, Symington LS. Recombination proteins in yeast. Annu Rev Genet. 2004;38:233–71.

53

Symington LS, Rothstein R, Lisby M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics. 2014;198:795–835.

54

Emerson CH, Bertuch AA. Consider the workhorse: nonhomologous end-joining in budding yeast. Biochem Cell Biol. 2016;94:396–406.

55

Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature. 1997;388:900–3.

56

Aylon Y, Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat Res. 2004;566:231–48.

57

Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 1999;97:621–33.

58

Åström SU, Okamura SM, Rine J. Yeast cell-type regulation of DNA repair. Nature. 1999;397:310.

59

Clerici M, Mantiero D, Lucchini G, Longhese MP. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double-strand break ends. J Biol Chem. 2005;280:38631–8.

60

Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature. 2008;455:770–4.

61

Luo K, Vega-Palas MA, Grunstein M. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 2002;16:1528–39.

62

Ferreira HC, Luke B, Schober H, Kalck V, Lingner J, Gasser SM. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol. 2011;13:867–74.

63

Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 2004;23:1301–12.

64

Friis J, Roman H. The effect of the mating-type alleles on intragenic recombination in yeast. Genetics. 1968;59:33–6.

65

Lawrence CW, Christensen R. UV mutagenesis in radiation-sensitive strains of yeast. Genetics. 1976;82:207–32.

66

Boram WR, Roman H. Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion. Proc Natl Acad Sci USA. 1976;73:2828–32.

67

Saeki T, Machida I, Nakai S. Genetic control of diploid recovery after γ-irradiation in the yeast Saccharomyces cerevisiae. Mutat Res. 1980;73:251–65.

68

Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet. 1981;184:471–8.

69

Fan L, Bi T, Wang L, Xiao W. DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J. 2020;477:2655–77.

70

Broomfield S, Hryciw T, Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 2001;486:167–84.

71

Barbour L. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat Res. 2003;532:137–55.

72

Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002;419:135–41.

73

Stelter P, Ulrich HD. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 2003;425:188–91.

74

Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell. 2005;19:123–33.

75

Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 2005;436:428–33.

76

Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003;423:309–12.

77

Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003;423:305–9.

78

Schiestl RH, Prakash S, Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics. 1990;124:817–31.

79

Laurenson P, Rine J. Silencers, silencing, and heritable transcriptional states. Microbiol Rev. 1992;56:543–60.

80

Kurtz S, Shore D. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 1991;5:616–28.

81

Thompson JS, Ling X, Grunstein M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature. 1994;369:245–7.

82

Steinkraus KA, Kaeberlein M, Kennedy BK. Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol. 2008;24:29–54.

83

Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959;183:1751–2.

84

Egilmez NK, Jazwinski SM. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol. 1989;171:37–42.

85

Powell CD, Quain DE, Smart KA. Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology. 2003;149:3129–37.

86

Boselli M, Rock J, Ünal E, Levine SS, Amon A. Effects of age on meiosis in budding yeast. Dev Cell. 2009;16:844–55.

87

Müller I. Parental age and the life-span of zygotes of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 1985;51:1–10.

88

Sinclair DA, Guarente L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell. 1997;91:1033–42.

89

Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39:724–35.

90

Bradshaw PC. Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan. Antioxidants. 2021;10:572.

91

Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, et al. Sir2 blocks extreme life-span extension. Cell. 2005;123:655–67.

92

Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.

93

Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res. 2014;14:73–88.

94

Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, et al. Loss of epigenetic information as a cause of mammalian aging. Cell. 2023;186:305–26.

95

Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 2014;28:396–408.

96

Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009;459:802–7.

97

Ruault M, De Meyer A, Loïodice I, Taddei A. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast. J Cell Biol. 2011;192:417–31.

98

Laporte D, Courtout F, Tollis S, Sagot I. Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation. Mol Biol Cell. 2016;27:1875–84.

99

Guidi M, Ruault M, Marbouty M, Loïodice I, Cournac A, Billaudeau C, et al. Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 2015;16:206.

100

Kennedy BK, Austriaco, Jr. NR, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995;80:485–96.

101

Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 2003;15:164–71.

102

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

103

Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol. 2021;11:585821.

104

Vassilopoulos A, Fritz KS, Petersen DR, Gius D. The human sirtuin family: evolutionary divergences and functions. Hum Genomics. 2011;5:485–96.

105

Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nature Cell Biol. 2020;22:1170–9.

106

North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11:437–44.

107

Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280:13560–7.

108

Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci. 2008;4:291–9.

109

Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, et al. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. J Cell Biol. 2024;223:e202305048.

mLife
Pages 207-218
Cite this article:
Rybchuk J, Xiao W. Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response. mLife, 2024, 3(2): 207-218. https://doi.org/10.1002/mlf2.12108

125

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 December 2023
Accepted: 28 January 2024
Published: 15 May 2024
© 2024 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return