AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

MarR family proteins sense sulfane sulfur in bacteria

Guanhua Xuan1,2,Luying Xun1,3( )Yongzhen Xia1 ( )
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, China
School of Molecular Biosciences, Washington State University, Pullman, Washington, USA

Editor: Cheng‐Cai Zhang, Institute of Hydrobiology, Chinese Academy of Sciences, China

Show Author Information

Abstract

Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.

References

1

Seoane AS, Levy SB. Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol. 1995;177:3414–9.

2

Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1994;176:143–8.

3

Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, et al. Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44:D574–80.

4

Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol. 2017;52:595–613.

5

Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother. 1997;41:2067–75.

6

Lim D, Poole K, Strynadka NCJ. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem. 2002;277:29253–9.

7

Head JF, Alekshun MN, Levy SB, et al. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Mol Biol. 2001;8:710–4.

8

Wu RY, Zhang RG, Zagnitko O, Dementieva I, Maltzev N, Watson JD, et al. Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J Biol Chem. 2003;278:20240–4.

9

Grove A. Regulation of metabolic pathways by MarR family transcription factors. Comput Struct Biotechnol J. 2017;15:366–71.

10

Grove A. MarR family transcription factors. Curr Biol. 2013;23:R142–3.

11

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Prot Sci. 2018;27:14–25.

12

Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: tools for structure building and analysis. Prot Sci. 2023;32:e4792.

13

Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Angstrom resolution. Nat Struct Biol. 2001;8:710–4.

14

Hirakawa H, Hirakawa Y, Greenberg EP, Harwood CS. BadR and BadM proteins transcriptionally regulate two operons needed for anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl Environ Microbiol. 2015;81:4253–62.

15

Gupta A, Pande A, Sabrin A, Thapa SS, Gioe BW, Grove A. MarR family transcription factors from Burkholderia species: hidden clues to control of virulence-associated genes. Microbiol Mol Biol Rev. 2019;83:e0003918.

16

Pande A, Veale TC, Grove A. Gene regulation by redox-sensitive Burkholderia thailandensis OhrR and its role in bacterial killing of Caenorhabditis elegans. Infect Immun. 2018;86:e0032218.

17

Gupta A, Fuentes SM, Grove A. Redox-sensitive MarR homologue BifR from Burkholderia thailandensis regulates biofilm formation. Biochemistry. 2017;56:2315–27.

18

Gupta A, Grove A. Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis. Biochemistry. 2014;53:4368–80.

19

Davis JR, Brown BL, Page R, Sello JK. Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors. Nucleic Acids Res. 2013;41:3888–900.

20

Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, et al. Escherichia coli uses separate enzymes to produce H2S and reactive sulfane sulfur from L-cysteine. Front Microbiol. 2019;10:298.

21

Toohey JI. Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem. 2011;413:1–7.

22

Lau N, Pluth MD. Reactive sulfur species (RSS):persulfides, polysulfides, potential, and problems. Curr Opin Chem Biol. 2019;49:1–8.

23

Peng H, Zhang Y, Palmer LD, Kehl-Fie TE, Skaar EP, Trinidad JC, et al. Hydrogen sulfide and reactive sulfur species impact proteome S-sulfhydration and global virulence regulation in Staphylococcus aureus. ACS Infect Dis. 2017;3:744–55.

24

Xuan G, Lü C, Xu H, Chen Z, Li K, Liu H, et al. Sulfane sulfur is an intrinsic signal activating MexR-regulated antibiotic resistance in Pseudomonas aeruginosa. Mol Microbiol. 2020;114:1038–48.

25

Xu H, Xuan G, Liu H, Xia Y, Xun L. Sulfane sulfur is a strong inducer of the multiple antibiotic resistance regulator MarR in Escherichia coli. Antioxidants. 2021;10:1778.

26

Xu H, Xuan G, Liu H, Liu H, Xia Y, Xun L. Sulfane sulfur is an intrinsic signal for the organic peroxide sensor OhrR of Pseudomonas aeruginosa. Antioxidants. 2022;11:1667.

27

Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, et al. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol. 2014;10:21–8.

28

Chen PR, Bae T, Williams WA, Duguid EM, Rice PA, Schneewind O, et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol. 2006;2:591–5.

29

Chen H, Hu J, Chen PR, Lan L, Li Z, Hicks LM, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci USA. 2008;105:13586–91.

30

Wang T, Ran M, Li X, Liu Y, Xin Y, Liu H, et al. The pathway of sulfide oxidation to octasulfur globules in the cytoplasm of aerobic bacteria. Appl Environ Microbiol. 2022;88:e194121.

31

Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA. 2014;111:7606–11.

32

Akaike T, Ida T, Wei FY, Nishida M, Kumagai Y, Alam MM, et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun. 2017;8:1177.

33

Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 2017;11:2754–66.

34

Dóka É, Pader I, Bíró A, Johansson K, Cheng Q, Ballagó K, et al. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv. 2016;2:e1500968.

35

Wedmann R, Onderka C, Wei S, Szijártó IA, Miljkovic JL, Mitrovic A, et al. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci. 2016;7:3414–26.

36

Ran M, Wang T, Shao M, Chen Z, Liu H, Xia Y, et al. Sensitive method for reliable quantification of sulfane sulfur in biological samples. Anal Chem. 2019;91:11981–6.

37

Chang YM, Chen CKM, Ko TP, Chang-Chien MW, Wang AHJ. Structural analysis of the antibiotic-recognition mechanism of MarR proteins. Acta Crystallogr D. 2013;69:1138–49.

38

Chang YM, Jeng WY, Ko TP, Yeh YJ, Chen CKM, Wang AHJ. Structural study of TcaR and its complexes with multiple antibiotics from Staphylococcus epidermidis. Proc Natl Acad Sci USA. 2010;107:8617–22.

39

Kumarevel T, Tanaka T, Umehara T, Yokoyama S. ST1710-DNA complex crystal structure reveals the DNA binding mechanism of the MarR family of regulators. Nucleic Acids Res. 2009;37:4723–35.

40

Saridakis V, Shahinas D, Xu X, Christendat D. Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum. J Mol Biol. 2008;377:655–67.

41

Alekshun MN, Levy SB. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J Bacteriol. 1999;181:4669–72.

42

Perera IC, Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol. 2010;2:243–54.

43

Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci USA. 1995;92:5456–60.

44

Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. TIM. 2022;30:679–92.

45

Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. TIM. 2017;25:456–66.

46

Si M, Chen C, Su T, Che C, Yao S, Liang G, et al. CosR is an oxidative stress sensing a MarR-type transcriptional repressor in Corynebacterium glutamicum. Biochem J. 2018;475:3979–95.

47

Fuangthong M, Helmann JD. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci USA. 2002;99:6690–5.

48

Panmanee W, Vattanaviboon P, Poole LB, Mongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J Bacteriol. 2006;188:1389–95.

49

Cussiol JRR, Alegria TGP, Szweda LI, Netto LES. Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J Biol Chem. 2010;285:21943–50.

50

Alegria TGP, Meireles DA, Cussiol JRR, Hugo M, Trujillo M, de Oliveira MA, et al. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proc Natl Acad Sci USA. 2017;114:E132–41.

51

Eiamphungporn W, Soonsanga S, Lee JW, Helmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res. 2009;37:1174–81.

52

Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics. 2011;10:M111.009506.

53

Klomsiri C, Panmanee W, Dharmsthiti S, Vattanaviboon P, Mongkolsuk S. Novel roles of ohrR-ohr in Xanthomonas sensing, metabolism, and physiological adaptive response to lipid hydroperoxide. J Bacteriol. 2005;187:3277–81.

54

Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol. 1998;180:2636–43.

55

Chuchue T, Tanboon W, Prapagdee B, Dubbs JM, Vattanaviboon P, Mongkolsuk S. ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J Bacteriol. 2006;188:842–51.

56

Li N, Luo Q, Jiang Y, Wu G, Gao H. Managing oxidative stresses in Shewanella oneidensis: intertwined roles of the OxyR and OhrR regulons. Environ Microbiol. 2014;16:1821–34.

57

Poor CB, Chen PR, Duguid E, Rice PA, He C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem. 2009;284:23517–24.

58

Atichartpongkul S, Fuangthong M, Vattanaviboon P, Mongkolsuk S. Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides. J Bacteriol. 2010;192:2093–101.

59

Guerra AJ, Dann CE, Giedroc DP. Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(Ⅱ)-bound state. J Am Chem Soc. 2011;133:19614–7.

60

Sanson M, Makthal N, Flores AR, Olsen RJ, Musser JM, Kumaraswami M. Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence. Nucleic Acids Res. 2015;43:418–32.

61

Pagliai FA, Coyle JF, Kapoor S, Gonzalez CF, Lorca GL. LdtR is a master regulator of gene expression in Liberibacter asiaticus. Microb Biotechnol. 2017;10:896–909.

62

Pagliai FA, Gardner CL, Bojilova L, Sarnegrim A, Tamayo C, Potts AH, et al. The transcriptional activator LdtR from ‘Candidatus Liberibacter asiaticus’ mediates osmotic stress tolerance. PLoS Pathog. 2014;10:e1004101.

63

Pagliai FA, Pan L, Silva D, Gonzalez CF, Lorca GL. Zinc is an inhibitor of the LdtR transcriptional activator. PLoS One. 2018;13:e0195746.

64

Li H, Li J, Lü C, Xia Y, Xin Y, Liu H, et al. FisR activates σ54-dependent transcription of sulfide-oxidizing genes in Cupriavidus pinatubonensis JMP134. Mol Microbiol. 2017;105:373–84.

65

Shimizu T, Shen J, Fang M, Zhang Y, Hori K, Trinidad JC, et al. Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis. Proc Natl Acad Sci USA. 2017;114:2355–60.

66

Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, et al. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol Microbiol. 2014;94:1343–60.

67

Hou N, Yan Z, Fan K, Li H, Zhao R, Xia Y, et al. OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli. Redox Biol. 2019;26:101293.

68

Lu T, Cao Q, Pang X, Xia Y, Xun L, Liu H. Sulfane sulfur-activated actinorhodin production and sporulation is maintained by a natural gene circuit in Streptomyces coelicolor. Microb Biotechnol. 2020;13:1917–32.

69

Lu T, Wu X, Cao Q, Xia Y, Xun L, Liu H. Sulfane sulfur posttranslationally modifies the global regulator AdpA to influence actinorhodin production and morphological differentiation of Streptomyces coelicolor. mBio. 2022;13:e386221.

70

Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6:26–41.

71

Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, et al. Sulfane sulfur regulates LasR-mediated quorum sensing and virulence in Pseudomonas aeruginosa PAO1. Antioxidants. 2021;10:1498.

72

Fakhoury JN, Zhang Y, Edmonds KA, Bringas M, Luebke JL, Gonzalez-Gutierrez G, et al. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Res. 2021;49:12556–76.

73

Capdevila DA, Walsh BJC, Zhang Y, Dietrich C, Gonzalez-Gutierrez G, Giedroc DP. Structural basis for persulfide-sensing specificity in a transcriptional regulator. Nat Chem Biol. 2021;17:65–70.

74

Sievers F, Higgins DG. The clustal omega multiple alignment package. Methods Mol Biol. 2021;2231:3–16.

75

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–4.

76

Gambino L, Gracheck SJ, Miller PF. Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1993;175:2888–94.

77

Poole K, Srikumar R. Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem. 2001;1:59–71.

78

Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. TIM. 2011;19:419–26.

79

Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, et al. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun. 2019;10:1520.

80

Morita Y, Kimura N, Mima T, Mizushima T, Tsuchiya T. Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol. 2001;47:27–32.

81

Saito K. Molecular mechanism of MexR-mediated regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2001;195:23–8.

82

Srikumar R, Paul CJ, Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 2000;182:1410–4.

83

Newberry KJ, Fuangthong M, Panmanee W, Mongkolsuk S, Brennan RG. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR. Mol Cell. 2007;28:652–64.

84

Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY. Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol. 2006;188:1899–910.

85

Jiang Q, Jin Z, Sun B. MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons in Staphylococcus aureus. Appl Environ Microbiol. 2018;84:e01008–18.

86

Crosby HA, Schlievert PM, Merriman JA, King JM, Salgado-Pabón W, Horswill AR. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface protein expression. PLoS Pathog. 2016;12:e1005604.

87

Chen PR, Bae T, Williams WA, Duguid EM, Rice PA, Schneewind O, et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol. 2006;2:591–5.

88

DeLeon ER, Gao Y, Huang E, Arif M, Arora N, Divietro A, et al. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? Am J Physiol Regul Integr Comp Physiol. 2016;310:R549–60.

89

Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. 2015;11:457–64.

90

Chen PR, Nishida S, Poor CB, Cheng A, Bae T, Kuechenmeister L, et al. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol. 2009;71:198–211.

91

Fritsch VN, Loi VV, Kuropka B, Gruhlke M, Weise C, Antelmann H. The MarR/DUF24-family QsrR repressor senses quinones and oxidants by thiol switch mechanisms in Staphylococcus aureus. Antioxid Redox Signaling. 2023;38:877–95.

92

Duval V, McMurry LM, Foster K, Head JF, Levy SB. Mutational analysis of the multiple-antibiotic resistance regulator MarR reveals a ligand-binding pocket at the interface between the dimerization and DNA binding domains. J Bacteriol. 2013;195:3341–51.

93

Brier S, Fagnocchi L, Donnarumma D, Scarselli M, Rappuoli R, Nissum M, et al. Structural insight into the mechanism of DNA-binding attenuation of the Neisserial adhesin repressor NadR by the small natural ligand 4-hydroxyphenylacetic acid. Biochemistry. 2012;51:6738–52.

mLife
Pages 231-239
Cite this article:
Xuan G, Xun L, Xia Y. MarR family proteins sense sulfane sulfur in bacteria. mLife, 2024, 3(2): 231-239. https://doi.org/10.1002/mlf2.12109

184

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 October 2023
Accepted: 24 December 2023
Published: 15 May 2024
© 2024 The Authors. mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return