AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus

Jianguo Li1,2,Tingyin Lu1,2Yuefei Chu1,2Yuejun Zhang1,2Jing Zhang1,2,3Wenzhen Fu1,2Jian Sun1,2Yahong Liu1,2Xiao-Ping Liao1,2( )Yu-Feng Zhou1,2 ( )
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
Yantai Fushan Center for Animal Disease Control and Prevention, Yantai, China

Editor: Liang Yang, Southern University of Science and Technology, China

Show Author Information

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and β-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to β-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on β-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with β-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA–mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to β-lactams. Furthermore, CIN fully restored the anti-MRSA activities of β-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a β-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.

References

1

Bassetti M, Baguneid M, Bouza E, Dryden M, Nathwani D, Wilcox M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect. 2014;20:3–18.

2

Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care. 2017;21:211.

3

Boucher H, Miller LG, Razonable RR. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2010;51:S183–97.

4

Boucher HW, Sakoulas G. Perspectives on daptomycin resistance, with emphasis on resistance in Staphylococcus aureus. Clin Infect Dis. 2007;45:601–8.

5

Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46:S344–9.

6

Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601.

7

Li L, Cheung A, Bayer AS, Chen L, Abdelhady W, Kreiswirth BN, et al. The global regulon sarA regulates β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus in vitro and in endovascular infections. J Infect Dis. 2016;214:1421–9.

8

Chen FJ, Wang CH, Chen CY, Hsu YC, Wang KT. Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrob Agents Chemother. 2014;58:1047–54.

9

García-Fernández E, Koch G, Wagner RM, Fekete A, Stengel ST, Schneider J, et al. Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell. 2017;171:1354–67.

10

Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, et al. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol. 2001;183:7341–53.

11

Chien Y, Manna AC, Cheung AL. SarA level is a determinant of agr activation in Staphylococcus aureus. Mol Microbiol. 1998;30:991–1001.

12

Cheung AL, Nishina KA, Trotonda MP, Tamber S. The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol. 2008;40:355–61.

13

Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 2019;26:15–21.

14

Trotonda MP, Xiong YQ, Memmi G, Bayer AS, Cheung AL. Role of mgrA and sarA in methicillin-resistant Staphylococcus aureus autolysis and resistance to cell wall-active antibiotics. J Infect Dis. 2009;199:209–18.

15

Rao PV, Gan SH. Cinnamon: a multifaceted medicinal plant. Evid Based Complementary Altern Med. 2014;2014:1–12.

16

Ahn SG, Jin YH, Yoon JH, Kim SA. The anticancer mechanism of 2′-hydroxycinnamaldehyde in human head and neck cancer cells. Int J Oncol. 2015;47:1793–800.

17

Chao LK, Hua KF, Hsu HY, Cheng SS, Lin IF, Chen CJ, et al. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol. 2008;46:220–31.

18

Jia P, Xue YJ, Duan XJ, Shao SH. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol. 2011;53:409–16.

19

He TF, Wang LH, Niu D, Wen Q, Zeng XA. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch Microbiol. 2019;201:451–8.

20

Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, et al. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008;8:149.

21

Fuda C, Suvorov M, Vakulenko SB, Mobashery S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem. 2004;279:40802–6.

22

Malouin F, Bryan LE. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrob Agents Chemother. 1986;30:1–5.

23

Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, et al. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol. 2015;11:855–61.

24

Abdelhady W, Bayer AS, Seidl K, Moormeier DE, Bayles KW, Cheung A, et al. Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis. 2014;209:1231–40.

25

Xiong YQ, Fowler, Jr. VG, Yeaman MR, Perdreau-Remington F, Kreiswirth BN, Bayer AS. Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J Infect Dis. 2009;199:201–8.

26

Zhou YF, Li L, Tao MT, Sun J, Liao XP, Liu YH, et al. Linezolid and rifampicin combination to combat cfr-positive multidrug-resistant MRSA in murine models of bacteremia and skin and skin structure infection. Front Microbiol. 2020;10:3080.

27

Liu Y, Manna AC, Pan CH, Kriksunov IA, Thiel DJ, Cheung AL, et al. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc Natl Acad Sci USA. 2006;103:2392–7.

28

Didier JP, Cozzone AJ, Duclos B. Phosphorylation of the virulence regulator SarA modulates its ability to bind DNA in Staphylococcus aureus. FEMS Microbiol Lett. 2010;306:30–6.

29

Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CCL, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci USA. 2012;109:15461–6.

30

Wang G, Li L, Wang X, Li X, Zhang Y, Yu J, et al. Hypericin enhances β-lactam antibiotics activity by inhibiting sarA expression in methicillin-resistant Staphylococcus aureus. Acta Pharm Sin B. 2019;9:1174–82.

31

Zhong Z, Zhou S, Liang Y, Wei Y, Li Y, Long T, et al. Natural flavonoids disrupt bacterial iron homeostasis to potentiate colistin efficacy. Sci Adv. 2023;9:eadg4205.

32

McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1.

33

Matsuura M, Nakazawa H, Hashimoto T, Mitsuhashi S. Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillin-resistant strains. Antimicrob Agents Chemother. 1980;17:908–11.

34

Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics. 2021;11:4910–28.

35

Liu S, Zhang J, Zhou Y, Hu N, Li J, Wang Y, et al. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br J Pharmacol. 2019;176:4548–57.

36

Liu Y, Jia Y, Yang K, Li R, Xiao X, Zhu K, et al. Metformin restores tetracyclines susceptibility against multidrug-resistant bacteria. Adv Sci. 2020;7:1902227.

37

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agricult Food Chem. 2007;55:4863–70.

38

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2:445–59.

39

Boles BR, Thoendel M, Roth AJ, Horswill AR. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One. 2010;5:e10146.

40

Snowden JN, Beaver M, Beenken K, Smeltzer M, Horswill AR, Kielian T. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation. PLoS One. 2013;8:e84089.

41

Beenken KE, Blevins JS, Smeltzer MS. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun. 2003;71:4206–11.

42

O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, et al. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol. 2007;45:1379–88.

43

Trotonda P, Manna AC, Cheung AL, Lasa I, Penadés R. SarA positively controls Bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol. 2005;187:5790–8.

44

Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 2016;1:16051.

45

Seidl K, Solis NV, Bayer AS, Hady WA, Ellison S, Klashman MC, et al. Divergent responses of different endothelial cell types to infection with Candida albicans and Staphylococcus aureus. PLoS One. 2012;7:e39633.

46

Xiong YQ, Bayer AS, Yeaman MR, Van Wamel W, Manna AC, Cheung AL. Impacts of sarA and agr in Staphylococcus aureus strain Newman on fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect Immun. 2004;72:1832–6.

47

Wolz C, Pöhlmann-Dietze P, Steinhuber A, Chien YT, Manna A, van Wamel W, et al. Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol Microbiol. 2000;36:230–43.

48

Mrak LN, Zielinska AK, Beenken KE, Mrak IN, Atwood DN, Griffin LM, et al. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. PLoS One. 2012;7:e38453.

49

Li L, Wang G, Cheung A, Abdelhady W, Seidl K, Xiong YQ. MgrA governs adherence, host cell interaction, and virulence in a murine model of bacteremia due to Staphylococcus aureus. J Infect Dis. 2019;220:1019–28.

50

Lei MG, Gudeta DD, Luong TT, Lee CY. MgrA negatively impacts Staphylococcus aureus invasion by regulating capsule and FnbA. Infect Immun. 2019;87:e0059019.

51

Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117:12415–74.

52

Lister PD, Sanders CC. Comparison of ampicillin-sulbactam regimens simulating 1.5- and 3.0-gram doses to humans in treatment of Escherichia coli bacteremia in mice. Antimicrob Agents Chemother. 1995;39:930–6.

53

English AR, Girard D, Haskell SL. Pharmacokinetics of sultamicillin in mice, rats, and dogs. Antimicrob Agents Chemother. 1984;25:599–602.

54

Sauve C, Azoulay-Dupuis E, Moine P, Darras-Joly C, Rieux V, Carbon C, et al. Efficacies of cefotaxime and ceftriaxone in a mouse model of pneumonia induced by two penicillin- and cephalosporin-resistant strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1996;40:2829–34.

55

Spentzas T, Kudumula R, Acuna C, Talati AJ, Ingram KC, Savorgnan F, et al. Role of bacterial components in macrophage activation by the LAC and MW2 strains of community-associated, methicillin-resistant Staphylococcus aureus. Cell Immunol. 2011;269:46–53.

56

Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A. Staphylococcus aureus PBP4 is essential for β-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob Agents Chemother. 2008;52:3955–66.

57
CLSI. Performance standards for antimicrobial susceptibility testing. 31st ed. Wayne, PA: CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021.
58

Zhou YF, Xiong YQ, Tao MT, Li L, Bu MX, Sun J, et al. Increased activity of linezolid in combination with rifampicin in a murine pneumonia model due to MRSA. J Antimicrob Chemother. 2018;73:1899–907.

59

Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1.

60

Sedlmayer F, Hell D, Müller M, Ausländer D, Fussenegger M. Designer cells programming quorum-sensing interference with microbes. Nat Commun. 2018;9:1822.

61

Poonacha N, Nair S, Desai S, Tuppad D, Hiremath D, Mohan T, et al. Efficient killing of planktonic and biofilm-embedded coagulase-negative staphylococci by bactericidal protein P128. Antimicrob Agents Chemother. 2017;61:e0045717.

62

Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, et al. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun. 2005;73:1811–9.

63

Chen L, Ren Z, Zhou X, Zeng J, Zou J, Li Y. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Appl Microbiol Biotechnol. 2016;100:857–67.

64

Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA. 2007;104:8113–8.

65

Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, et al. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol. 2007;189:2793–804.

66

Yuan Z, Dai Y, Ouyang P, Rehman T, Hussain S, Zhang T, et al. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms. 2020;8:99.

67

Yeaman MR, Puentes SM, Norman DC, Bayer AS. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992;60:1202–9.

68

Shao ES, Lin L, Yao Y, Boström KI. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood. 2009;114:2197–206.

69

Seidl K, Bayer AS, Fowler, Jr. VG, McKinnell JA, Abdel Hady W, Sakoulas G, et al. Combinatorial phenotypic signatures distinguish persistent from resolving methicillin-resistant Staphylococcus aureus bacteremia isolates. Antimicrob Agents Chemother. 2011;55:575–82.

70

Selvaraj A, Jayasree T, Valliammai A, Pandian SK. Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expression dynamism. Front Microbiol. 2019;10:2027.

71

Liu Y, Tong Z, Shi J, Jia Y, Deng T, Wang Z. Reversion of antibiotic resistance in multidrug-resistant pathogens using non-antibiotic pharmaceutical benzydamine. Commun Biol. 2021;4:1328.

72

Cui CY, He Q, Jia QL, Li C, Chen C, Wu XT, et al. Evolutionary trajectory of the tet(X) family: critical residue changes towards high-level tigecycline resistance. mSystems. 2021;6:e0005021.

73

Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc Natl Acad Sci USA. 2016;113:1648–53.

74

Koo WWK, Ke J, Tam YK, Finegan BA, Marriage B. Pharmacokinetics of ampicillin during parenteral nutrition. J Parenter Enteral Nutr. 1990;14:279–82.

75

Patel KB, Nicolau DP, Nightingale CH, Quintiliani R. Pharmacokinetics of cefotaxime in healthy volunteers and patients. Diagn Microbiol Infect Dis. 1995;22:49–55.

76

Bayer AS, Abdelhady W, Li L, Gonzales R, Xiong YQ. Comparative efficacies of tedizolid phosphate, linezolid, and vancomycin in a murine model of subcutaneous catheter-related biofilm infection due to methicillin-susceptible and -resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2016;60:5092–6.

77

Zhou YF, Shi W, Yu Y, Tao MT, Xiong YQ, Sun J, et al. Pharmacokinetic/pharmacodynamic correlation of cefquinome against experimental catheter-associated biofilm infection due to Staphylococcus aureus. Front Microbiol. 2016;6:1513.

78

Zhou YF, Tao MT, He YZ, Sun J, Liu YH, Liao XP. In vivo bioluminescent monitoring of therapeutic efficacy and pharmacodynamic target assessment of antofloxacin against Escherichia coli in a neutropenic murine thigh infection model. Antimicrob Agents Chemother. 2018;62:e0128117.

79

Abdelhady W, Bayer AS, Seidl K, Nast CC, Kiedrowski MR, Horswill AR, et al. Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57:1447–54.

80

Cheng WX, Zhong S, Meng XB, Zheng NY, Zhang P, Wang Y, et al. Cinnamaldehyde inhibits inflammation of human synoviocyte cells through regulation of Jak/Stat pathway and ameliorates collagen-induced arthritis in rats. J Pharmacol Exp Ther. 2020;373:302–10.

mLife
Pages 291-306
Cite this article:
Li J, Lu T, Chu Y, et al. Cinnamaldehyde targets SarA to enhance β-lactam antibiotic activity against methicillin-resistant Staphylococcus aureus. mLife, 2024, 3(2): 291-306. https://doi.org/10.1002/mlf2.12121

128

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 October 2023
Accepted: 19 February 2024
Published: 14 June 2024
© 2024 The Authors. mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return