AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Cofitness network connectivity determines a fuzzy essential zone in open bacterial pangenome

Pan Zhang1,2,3,#,Biliang Zhang2,4,#Yuan-Yuan Ji1,2Jian Jiao1,2Ziding Zhang4( )Chang-Fu Tian1,2 ( )
State Key Laboratory of Plant Environmental Resilience, and College of Biological Sciences, China Agricultural University, Beijing, China
MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
State Key Laboratory of Livestock and Poultry Biotechnology Breeding, and College of Biological Sciences, China Agricultural University, Beijing, China

#Pan Zhang and Biliang Zhang contributed equally to this study.

Editor: Fangqing Zhao, Beijing Institutes of Life Science, Chinese Academy of Sciences, China

Show Author Information

Abstract

Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory genes are dispensable, particularly in nutrient-rich environments. However, this assumption is seldom tested genetically within the pangenome context. In this study, we conducted a robust pangenomic Tn-seq analysis of fitness genes in a nutrient-rich medium for Sinorhizobium strains with a canonical open pangenome. To evaluate the robustness of fitness category assignment, Tn-seq data for three independent mutant libraries per strain were analyzed by three methods, which indicates that the Hidden Markov Model (HMM)-based method is most robust to variations between mutant libraries and not sensitive to data size, outperforming the Bayesian and Monte Carlo simulation-based methods. Consequently, the HMM method was used to classify the fitness category. Fitness genes, categorized as essential (ES), advantage (GA), and disadvantage (GD) genes for growth, are enriched in core genes, while nonessential genes (NE) are over-represented in accessory genes. Accessory ES/GA genes showed a lower fitness effect than core ES/GA genes. Connectivity degrees in the cofitness network decrease in the order of ES, GD, and GA/NE. In addition to accessory genes, 1599 out of 3284 core genes display differential essentiality across test strains. Within the pangenome core, both shared quasi-essential (ES and GA) and strain-dependent fitness genes are enriched in similar functional categories. Our analysis demonstrates a considerable fuzzy essential zone determined by cofitness connectivity degrees in Sinorhizobium pangenome and highlights the power of the cofitness network in understanding the genetic basis of ever-increasing prokaryotic pangenome data.

References

1
Barraclough TG. The evolutionary biology of species. 1st ed. Oxford: Oxford University Press; 2019. p. 288
2

Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.

3

Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e0073100719.

4

Shapiro BJ, Leducq J-B, Mallet J. What is speciation? PLoS Genet. 2016;12:e1005860.

5

Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.

6

Vos M, Hesselman MC, Te Beek TA, van Passel MWJ, Eyre-Walker A. Rates of lateral gene transfer in prokaryotes: high but why? TIM. 2015;23:598–605.

7

Young JPW. Bacteria are smartphones and mobile genes are apps. TIM. 2016;24:931–2.

8

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA. 2005;102:13950–5.

9

Arnold BJ, Huang IT, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20:206–18.

10

Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A, MacLean C. The ecology and evolution of pangenomes. Curr Biol. 2019;29:R1094–103.

11

Acevedo-Rocha CG, Fang G, Schmidt M, Ussery DW, Danchin A. From essential to persistent genes: a functional approach to constructing synthetic life. TIG. 2013;29:273–9.

12

Bergmiller T, Ackermann M, Silander OK. Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet. 2012;8:e1002803.

13

Haimovich AD, Muir P, Isaacs FJ. Genomes by design. Nat Rev Genet. 2015;16:501–16.

14

Fredens J, Wang K, de la Torre D, Funke LFH, Robertson WE, Christova Y, et al. Total synthesis of Escherichia coli with a recoded genome. Nature. 2019;569:514–8.

15

Simons M. Synthetic biology as a technoscience: the case of minimal genomes and essential genes. Stud History Philos Sci Part A. 2021;85:127–36.

16

Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics comes of age: from bacteria to plant and animal applications. TIG. 2020;36:132–45.

17

Douglas GM, Shapiro BJ. Genic selection within prokaryotic pangenomes. Genome Biol Evol. 2021;13:1–16.

18

McInerney JO, McNally A, O'Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2:17040.

19
Begon M, Townsend CR. Ecology: from individuals to ecosystems. 5th ed. New Jersey: Wiley; 2021. p. 864
20

Whelan FJ, Hall RJ, McInerney JO. Evidence for selection in the abundant accessory gene content of a prokaryote pangenome. Mol Biol Evol. 2021;38:3697–708.

21

Domingo-Sananes MR, McInerney JO. Mechanisms that shape microbial pangenomes. TIM. 2021;29:493–503.

22

Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan TF, et al. Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genet. 2018;14:e1007428.

23

Cui WJ, Zhang B, Zhao R, Liu LX, Jiao J, Zhang Z, et al. Lineage-specific rewiring of core pathways predating innovation of legume nodules shapes symbiotic efficiency. mSystems. 2021;6:e0129901220.

24

van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods. 2009;6:767–72.

25

Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature. 2018;557:503–9.

26

Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet. 2020;21:526–40.

27

Gallagher LA, Shendure J, Manoil C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio. 2011;2:e0031500310.

28

van Opijnen T, Dedrick S, Bento J. Strain-dependent genetic networks for antibiotic-sensitivity in a bacterial pathogen with a large pan-genome. PLoS Pathog. 2016;12:e1005869.

29

Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC, Grad YH, et al. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathog. 2019;15:e1007862.

30

Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog. 2013;9:e1003582.

31

Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA. Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci USA. 2016;113:13887–92.

32

Ji YY, Zhang B, Zhang P, Chen LC, Si YW, Wan XY, et al. Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. ISME J. 2023;17:417–31.

33

Wheatley RM, Ford BL, Li L, Aroney STN, Knights HE, Ledermann R, et al. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proc Natl Acad Sci USA. 2020;117:23823–34.

34

Liu Z, Beskrovnaya P, Melnyk RA, Hossain SS, Khorasani S, O'Sullivan LR, et al. A genome-wide screen identifies genes in rhizosphere-associated pseudomonas required to evade plant defenses. mBio. 2018;9:e0043318.

35

Sivakumar R, Ranjani J, Vishnu US, Jayashree S, Lozano GL, Miles J, et al. Evaluation of INSeq to identify genes essential for Pseudomonas aeruginosa PGPR2 corn root colonization. G3. 2019;9:651–61.

36

Ishizawa H, Kuroda M, Inoue D, Ike M. Genome-wide identification of bacterial colonization and fitness determinants on the floating macrophyte, duckweed. Commun Biol. 2022;5:68.

37

Torres M, Jiquel A, Jeanne E, Naquin D, Dessaux Y, Faure D. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots. New Phytol. 2022;233:905–18.

38

Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. Mol Plant Pathol. 2019;20:287–306.

39

Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ, Li L, et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2019;116:10072–80.

40

Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev Genet. 2007;8:437–49.

41

Mani R, St Onge RP, Hartman JL, Giaever G, Roth FP. Defining genetic interaction. Proc Natl Acad Sci USA. 2008;105:3461–6.

42

Leshchiner D, Rosconi F, Sundaresh B, Rudmann E, Ramirez LMN, Nishimoto AT, et al. A genome-wide Atlas of antibiotic susceptibility targets and pathways to tolerance. Nat Commun. 2022;13:3165.

43

Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet. 2016;17:615–29.

44

Kim E, Novak LC, Lin C, Colic M, Bertolet LL, Gheorghe V, et al. Dynamic rewiring of biological activity across genotype and lineage revealed by context-dependent functional interactions. Genome Biol. 2022;23:140.

45

Sun MGF, Sikora M, Costanzo M, Boone C, Kim PM. Network evolution: rewiring and signatures of conservation in signaling. PLoS Comput Biol. 2012;8:e1002411.

46

Kim J, Kim I, Han SK, Bowie JU, Kim S. Network rewiring is an important mechanism of gene essentiality change. Sci Rep. 2012;2:900.

47

Chen S, Zhang YE, Long M. New genes in Drosophila quickly become essential. Science. 2010;330:1682–5.

48

Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA. 2012;109:8629–34.

49

Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 2013;14:R17.

50

Zhang XX, Guo HJ, Jiao J, Zhang P, Xiong HY, Chen WX, et al. Pyrosequencing of rpoB uncovers a significant biogeographical pattern of rhizobial species in soybean rhizosphere. J Biogeography. 2017;44:1491–9.

51

Wang XL, Cui WJ, Feng XY, Zhong ZM, Li Y, Chen WX, et al. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: a strong selection of facultative microsymbionts. Soil Biol Biochem. 2018;116:340–50.

52

diCenzo GC, Finan TM. The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev. 2017;81:e0001900017.

53

diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet. 2014;10:e1004742.

54

Turner SL, Young JPW. The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol. 2000;17:309–19.

55

DeJesus MA, Ioerger TR. A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics. 2013;14:303.

56

DeJesus MA, Zhang YJ, Sassetti CM, Rubin EJ, Sacchettini JC, Ioerger TR. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics. 2013;29:695–703.

57

Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, et al. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol. 2017;2:17079.

58

Hubbard TP, D'Gama JD, Billings G, Davis BM, Waldor MK. Unsupervised learning approach for comparing multiple transposon insertion sequencing studies. mSphere. 2019;4:e0003100019.

59

Subramaniyam S, DeJesus MA, Zaveri A, Smith CM, Baker RE, Ehrt S, et al. Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression. BMC Bioinformatics. 2019;20:603.

60

Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA. 1999;96:1645–50.

61

Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 2009;6:279–89.

62

Wolk CP, Cai Y, Panoff JM. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA. 1991;88:5355–9.

63
Vincent JM. A manual for the practical study of the root-nodule bacteria. Oxford: Blackwell Scientific; 1970. p. 164.
64

Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A, Wollherr A, et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol. 2009;75:4035–45.

65

Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrere S, Faraut T, et al. Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res. 2013;20:339–54.

66

DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. TRANSIT-A software tool for himar1 TnSeq analysis. PLoS Comput Biol. 2015;11:e1004401.

67

Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci. 2015;112:4110–5.

68

Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, et al. High-resolution definition of the Vibrio cholerae essential gene set with Hidden Markov Model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 2013;41:9033–48.

69

Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel Zur Wiesch P, Abel S, et al. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog. 2019;15:e1007652.

70

Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, et al. DEG 15, an update of the database of essential genes that includes built-in analysis tools. Nucleic Acids Res. 2021;49:D677–86.

71

Jiao J, Zhang B, Li ML, Zhang Z, Tian CF. The zinc-finger bearing xenogeneic silencer MucR in α-proteobacteria balances adaptation and regulatory integrity. ISME J. 2022;16:738–49.

72

Papale F, Saget J, Bapteste É. Networks consolidate the core concepts of evolution by natural selection. TIM. 2020;28:254–65.

73

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

74
Zhang B, Jiao J, Zhang P, Cui WJ, Zhang Z, Tian C-F. Comparative analysis of core and accessory genes in coexpression network. In: Mengoni A, Bacci G, Fondi M editors. Bacterial Pangenomics: Methods and Protocols. New York: Springer; 2021. p. 45–58.
75

Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.

76

Xiao N, Zhou A, Kempher ML, Zhou BY, Shi ZJ, Yuan M, et al. Disentangling direct from indirect relationships in association networks. Proc Natl Acad Sci USA. 2022;119:e2109995119.

77

Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Change. 2021;11:343–8.

78

Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics. 2007;8:299.

79

Blais C, Archibald JM. The past, present and future of the tree of life. Curr Biol. 2021;31:R314–21.

80

Hou J, Ye X, Feng W, Zhang Q, Han Y, Liu Y, et al. Distance correlation application to gene co-expression network analysis. BMC Bioinformatics. 2022;23:81.

81

Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999;96:3801–6.

82

Aris-Brosou S. Determinants of adaptive evolution at the molecular level: the extended complexity hypothesis. Mol Biol Evol. 2004;22:200–9.

83

Cohen O, Gophna U, Pupko T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol. 2011;28:1481–9.

84

Novick A, Doolittle WF. Horizontal persistence and the complexity hypothesis. Biol Philos. 2020;35:2.

85

Baltrus DA. Exploring the costs of horizontal gene transfer. Trends Ecol Evolut. 2013;28:489–95.

86

Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021;372:eabe0511.

87

Tarnopol RL, Bowden S, Hinkle K, Balakrishnan K, Nishii A, Kaczmarek CJ, et al. Lessons from a minimal genome: what are the essential organizing principles of a cell built from scratch? ChemBioChem. 2019;20:2535–45.

88

Huang X, Albou LP, Mushayahama T, Muruganujan A, Tang H, Thomas PD. Ancestral genomes: a resource for reconstructed ancestral genes and genomes across the tree of life. Nucleic Acids Res. 2019;47:D271–9.

89

Hedin LE, Illergård K, Elofsson A. An introduction to membrane proteins. J Proteome Res. 2011;10:3324–31.

90

Sojo V. Why the lipid divide? Membrane proteins as drivers of the split between the lipids of the three domains of life. BioEssays. 2019;41:1800251.

91

Sojo V, Dessimoz C, Pomiankowski A, Lane N. Membrane proteins are dramatically less conserved than water-soluble proteins across the tree of life. Mol Biol Evol. 2016;33:2874–84.

92

Lu YJ, Zhang YM, Grimes KD, Qi J, Lee RE, Rock CO. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell. 2006;23:765–72.

93

Verhagen LM, de Jonge MI, Burghout P, Schraa K, Spagnuolo L, Mennens S, et al. Genome-wide identification of genes essential for the survival of Streptococcus pneumoniae in human saliva. PLoS One. 2014;9:e89541.

94

Ma X, Prathapam R, Wartchow C, Chie-Leon B, Ho CM, De Vicente J, et al. Structural and biological basis of small molecule inhibition of Escherichia coli LpxD acyltransferase essential for lipopolysaccharide biosynthesis. ACS Infect Dis. 2020;6:1480–9.

95

Han W, Ma X, Balibar CJ, Baxter Rath CM, Benton B, Bermingham A, et al. Two distinct mechanisms of inhibition of LpxA acyltransferase essential for lipopolysaccharide biosynthesis. J Am Chem Soc. 2020;142:4445–55.

96

Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature. 2014;511:108–11.

97

Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, et al. Essential genes in the core genome of the human pathogen Streptococcus pyogenes. Sci Rep. 2015;5:9838.

98

Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent advances in peptidoglycan synthesis and regulation in bacteria. Biomolecules. 2023;13:720.

99

Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology. 2001;11:25R–36R.

100

Gislason AS, Turner K, Domaratzki M, Cardona ST. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Microb Genom. 2018;4:e000179.

101

Mohamed YF, Valvano MA. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology. 2014;24:564–76.

102

Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.

103

Ferenci T. Trade-off mechanisms shaping the diversity of bacteria. TIM. 2016;24:209–23.

104
Miller JH. Experiments in molecular genetics. Cold Spring Harbor (N.Y.): Cold Spring Harbor Laboratory; 1972. p. 468.
105

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

106

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 2014;15:550.

107

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.

108

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

109

Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.

110

Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1–9.

111

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

112
Mendiburu FD. Agricolae: statistical procedures for agricultural research. R package version 1.3-3. Vienna: R Foundation for Statistical Computing; 2020. https://CRAN.R-project.org/package=agricolae
113

Wang P, Wang D, Lu J. Controllability analysis of a gene network for Arabidopsis thaliana reveals characteristics of functional gene families. IEEE/ACM Trans Comput Biol Bioinform. 2018;16:912–24.

mLife
Pages 277-290
Cite this article:
Zhang P, Zhang B, Ji Y-Y, et al. Cofitness network connectivity determines a fuzzy essential zone in open bacterial pangenome. mLife, 2024, 3(2): 277-290. https://doi.org/10.1002/mlf2.12132

165

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 November 2023
Accepted: 24 April 2024
Published: 28 June 2024
© 2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return