AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home mLife Article
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Identification of 3-ketocapnine reductase activity within the human microbiota

Xiaotong Wu1,2,#,Lukuan Hou2,3,#Haili Zhang2Yi Ma1Jufang Wang1Mingwei Cai2( )Xiaoyu Tang2 ( )
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China

#Xiaotong Wu and Lukuan Hou contributed equally to this study.

Editor: Chenli Liu, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Show Author Information

Abstract

The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of L-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.

References

1

Zaidi S, Ali K, Khan AU. It's all relative: analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: challenges and opportunities for disease intervention. Arch Microbiol. 2023;205:257.

2

Ayariga JA, Ibrahim I, Gildea L, Abugri J, Villafane R. Microbiota in a long survival discourse with the human host. Arch Microbiol. 2023;205:5.

3

Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab. 2014;20:719–30.

4

Di Cyan E. A treatise on the chemical constitution of the brain: a facsimile with an introduction by David A. Drabkin. Arch Intern Med. 1963;111:837–8.

5

Harrison PJ, Dunn TM, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep. 2018;35:921–54.

6

Anderson R, Livermore BP, Volcani BE, Kates M. A novel sulfonolipid in diatoms. Biochim Biophys Acta (BBA). 1975;409:259–63.

7

Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175–91.

8

Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, et al. Thematic review series: sphingolipids. biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res. 2008;49:1621–39.

9

Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Rep. 2004;5:777–82.

10

Merrill AH. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem. 2002;277:25843–6.

11

Maeda J, Nishida M, Takikawa H, Yoshida H, Azuma T, Yoshida M, et al. Inhibitory effects of sulfobacin B on DNA polymerase and inflammation. Int J Mol Med. 2010;26:751–8.

12

Woznica A, Cantley AM, Beemelmanns C, Freinkman E, Clardy J, King N. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc Natl Acad Sci USA. 2016;113:7894–9.

13

Godchaux 3rd W, Gorski L, Leadbetter ER. Outer membrane polysaccharide deficiency in two nongliding mutants of Cytophaga johnsonae. J Bacteriol. 1990;172:1250–5.

14

Hou L, Tian H-Y, Wang L, Ferris ZE, Wang J, Cai M, et al. Identification and biosynthesis of pro-inflammatory sulfonolipids from an opportunistic pathogen Chryseobacterium gleum. ACS Chem Biol. 2022;17:1197–206.

15

Older EA, Zhang J, Ferris ZE, Xue D, Zhong Z, Mitchell MK, et al. Human gut microbial sulfonolipids are linked to inflammatory bowel diseases through Toll-like receptor 4 signaling. bioRxiv. 2023. https://10.1101/2023.03.16.533047

16

Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, et al. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem. 1998;273:30688–94.

17

Lee M-T, Le HH, Besler KR, Johnson EL. Identification and characterization of 3-ketosphinganine reductase activity encoded at the BT_0972 locus in Bacteroides thetaiotaomicron. J Lipid Res. 2022;63:100236.

18

White RH. Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol. 1984;159:42–6.

19

Abbanat DR, Godchaux III W, Polychroniou G, Leadbetter ER. Biosynthesis of a sulfonolipid in gliding bacteria. Biochem Biophys Res Commun. 1985;130:873–8.

20

Liu Y, Wei Y, Teh TM, Liu D, Zhou Y, Zhao S, et al. Identification and characterization of the biosynthetic pathway of the sulfonolipid capnine. Biochemistry. 2022;61:2861–9.

21

Barbosa EV, Cardoso CV, de Cássia Figueira Silva R, de Mello Figueiredo Cerqueira A, Liberal MHT, Castro HC. Ornithobacterium rhinotracheale: an update review about an emerging poultry pathogen. Vet Sci. 2019;7:3.

22

Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem. 2004;279:49243–50.

23

Smith GA, Huggett A, Jones C, Ortego G. Surface activity and performance properties of gemini salts of linear alkylbenzene sulfonate in aqueous solution. J Surfactants Deterg. 2021;24:563–74.

24

Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta (BBA). 2006;1758:2057–79.

25

Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J, Heinzmann SS, et al. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep. 2017;7:11047.

26

Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

27

Jin H, Hu G, Sun C, Duan Y, Zhang Z, Liu Z, et al. mBodyMap: a curated database for microbes across human body and their associations with health and diseases. Nucleic Acids Res. 2022;50:D808–16.

28

Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, et al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact. 2009;178:94–8.

29

Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9:605–18.

30

Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–94.

31

Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell. 2006;124:61–73.

32

Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.

33

Creasy HH, Felix V, Aluvathingal J, Crabtree J, Ifeonu O, Matsumura J, et al. HMPDACC: a human microbiome project multi-omic data resource. Nucleic Acids Res. 2021;49:D734–42.

34

Kamiyama T, Umino T, Itezono Y, Nakamura Y, Satoh T, Yokose K. Sulfobacins A and B, novel von willebrand factor receptor antagonists. II. Structural elucidaffon. J Antibiot. 1995;48:929–36.

35

Manzo E, Cutignano A, Pagano D, Gallo C, Barra G, Nuzzo G, et al. A new marine-derived sulfoglycolipid triggers dendritic cell activation and immune adjuvant response. Sci Rep. 2017;7:6286.

36

Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305.

37

Fornarotto M, Xiao L, Hou Y, Koch KA, Chang E, O'Malley RM, et al. Sphingolipid biosynthesis in pathogenic fungi: identification and characterization of the 3-ketosphinganine reductase activity of Candida albicans and Aspergillus fumigatus. Biochim Biophys Acta (BBA). 2006;1761:52–63.

38

Chao D-Y, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, et al. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell. 2011;23:1061–81.

39

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.

40

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

41

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.

42

Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C, et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023;51:W484–92.

43

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

44

DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40:82–92.

45

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

46

Chen T, Yu W-H, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010;2010:baq013.

47

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39:105–14.

48

Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell. 2019;178:1245–59.

49

Zhu J, Tian L, Chen P, Han M, Song L, Tong X, et al. Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa. Genomics Insights. 2022;20:246–59.

mLife
Pages 307-316
Cite this article:
Wu X, Hou L, Zhang H, et al. Identification of 3-ketocapnine reductase activity within the human microbiota. mLife, 2024, 3(2): 307-316. https://doi.org/10.1002/mlf2.12134

168

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 December 2023
Accepted: 25 April 2024
Published: 28 June 2024
© 2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return