AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in MRI-guided precision radiotherapy

Chenyang Liu1Mao Li2Haonan Xiao1Tian Li1Wen Li1Jiang Zhang1Xinzhi Teng1Jing Cai1( )
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
Department of Radiation Oncology, Philips Healthcare, Chengdu, China

Chenyang Liu and Mao Li contributed equally to the manuscript.

Show Author Information

Abstract

Magnetic resonance imaging (MRI) is becoming increasingly important in precision radiotherapy owing to its excellent soft-tissue contrast and versatile scan options. Many recent advances in MRI have been shown to be promising for MRI-guided radiotherapy and for improved treatment outcomes. This paper summarizes these advances into six sections: MRI simulators, MRI-linear accelerator hybrid machines, MRI-only workflow, four-dimensional MRI, MRI-based radiomics, and magnetic resonance fingerprinting. These techniques can be implemented before, during, or after radiotherapy for various precision radiotherapy applications, such as tumor delineation, tumor motion management, treatment adaptation, and clinical decision making. For each of these techniques, this paper describes its technical details and discusses its clinical benefits and challenges.

References

1

Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012; 9(3): 193–199.

2

Yu J, Xing L. Precision radiation oncology: achievements and challenges. Precis Radiat Oncol. 2017; 1(1): 4–6.

3

Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007; 25(8): 938–946. https://doi.org/10.1200/JCO.2006.09.9515

4

Gupta T, Beriwal S. PET/CT-guided radiation therapy planning: from present to the future. Indian J Cancer. 2010; 47(2): 126–133.

5

Tyagi N, Zelefsky MJ, Wibmer A, et al. Clinical experience and workflow challenges with magnetic resonance-only radiation therapy simulation and planning for prostate cancer. Phys Imaging Radiat Oncol. 2020; 16: 43-49.

6

Chin S, Eccles CL, McWilliam A, et al. Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol. 2020; 64(1): 163–177.

7

Siddique S, Chow JCL. Artificial intelligence in radiotherapy. Rep Pract Oncol Radiother. 2020; 25(4): 656–666.

8

Dimopoulos JC, Petrow P, Tanderup K, et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group (Ⅳ): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012; 103(1): 113–122.

9

Wang J, Tanderup K, Cunha A, et al. Magnetic resonance imaging basics for the prostate brachytherapist. Brachytherapy. 2017; 16(4): 715–727.

10

Okamoto Y, Imanaka K, Sakaguchi T, et al. Fundamental study on development of MRI simulation system for radiotherapy planning. Int J Radiat Oncol Biol Phys. 1993; 27: 303. https://doi.org/10.1016/0360-3016(93)90917-K

11

Schubert K, Wenz F, Krempien R, et al. Einsatzmöglichkeiten eines offenen magnetresonanztomographen in der therapiesimulation und dreidimensionalen bestrahlungsplanung [Possibilities of an open magnetic resonance scanner integration in therapy simulation and three-dimensional radiotherapy planning. Strahlenther Onkol. 1999; 175(5): 225–231.

12

Paulson ES, Crijns SP, Keller BM, et al. Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol. 2016; 121(2): 187–192.

13

Hua CH, Uh J, Krasin MJ, et al. Clinical implementation of magnetic resonance imaging systems for simulation and planning of pediatric radiation therapy. J Med Imaging Radiat Sci. 2018; 49(2): 153–163.

14

Bainbridge H, Salem A, Tijssen RHN, et al. Magnetic resonance imaging in precision radiation therapy for lung cancer. Transl Lung Cancer Res. 2017; 6(6): 689–707.

15

Ligtenberg H, Schakel T, Dankbaar JW, et al. Target volume delineation using diffusion-weighted imaging for MR-guided radiotherapy: a case series of laryngeal cancer validated by pathology. Cureus. 2018; 10(4): e2465. https://doi.org/10.7759/cureus.2465

16

Liney GP, Whelan B, Oborn B, Barton M, Keall P. MRI-linear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol). 2018; 30(11): 686–691.

17

Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017; 62(23): L41–L50.

18

Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: the Elekta unity MR-linac concept. Clin Transl Radiat Oncol. 2019; 18: 54–59.

19

Kontaxis C, de Muinck Keizer DM, Kerkmeijer LGW, et al. Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system. Phys Imaging Radiat Oncol. 2020; 15: 23–29.

20

Borman PTS, Tijssen RHN, Bos C, Moonen CTW, Raaymakers BW, Glitzner M. Characterization of imaging latency for real-time MRI-guided radiotherapy. Phys Med Biol. 2018; 63(15): 155023. https://doi.org/10.1088/1361-6560/aad2b7

21

Kontaxis C, Bol GH, Lagendijk JJW, Raaymakers BW. DeepDose: towards a fast dose calculation engine for radiation therapy using deep learning. Phys Med Biol. 2020; 65(7): 075013. https://doi.org/10.1088/1361-6560/ab7630

22

Li W, Li Y, Qin W, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant Imaging Med Surg. 2020; 10(6): 1223–1236.

23

Song L, Li Y, Dong G, et al. Artificial intelligence-based bone-enhanced magnetic resonance image-a computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy. Quant Imaging Med Surg. 2021; 11(12): 4709–4720.

24

Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017; 12(1): 28. https://doi.org/10.1186/s13014-016-0747-y

25

Bratova I, Paluska P, Grepl J, et al. Validation of dose distribution computation on sCT images generated from MRI scans by Philips MRCAT. Rep Pract Oncol Radiother. 2019; 24(2): 245–250.

26

Li W, Kazemifar S, Bai T, et al. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning. Biomed Phys Eng Express. 2021; 7: (2): 025020. https://doi.org/10.1088/2057-1976/abe3a7

27

Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011; 22(2): 133-vii. https://doi.org/10.1016/j.nec.2010.11.001

28

Olsson LE, Johansson M, Zackrisson B, Blomqvist LK. Basic concepts and applications of functional magnetic resonance imaging for radiotherapy of prostate cancer. Phys Imaging Radiat Oncol. 2019; 9: 50–57.

29

Hu L, Zhou DW, Zha YF, et al. Synthesizing high-b-value diffusion-weighted imaging of the prostate using generative adversarial networks. Radiol Artif Intell. 2021; 3(5): e200237. https://doi.org/10.1148/ryai.2021200237

30

Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H. Gadolinium-based contrast agents and NSF: evidence from animal experience. J Magn Reson Imaging. 2009; 30(6): 1268–1276.

31

Zhang B, Liang L, Chen W, Liang C, Zhang S. An updated study to determine association between gadolinium-based contrast agents and nephrogenic systemic fibrosis. PLoS One. 2015; 10(6): e0129720. https://doi.org/10.1371/journal.pone.0129720

32

Ramalho J, Semelka RC, Ramalho M, Nunes RH, Alobaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016; 37(7): 1192–1198.

33

Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging. 2018; 48(2): 330–340.

34

Kleesiek J, Morshuis JN, Isensee F, et al. Can virtual contrast enhancement in brain MRI replace gadolinium? A feasibility study. Invest Radiol. 2019; 54(10): 653–660.

35
Chen C, Raymond C, Speier B, et al. Synthesizing MR image contrast enhancement using 3D high-resolution ConvNets. ArXiv. 2021. abs/2104.01592.
36

Cai J, Read PW, Altes TA, Molloy JA, Brookeman JR, Sheng K. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI. Phys Med Biol. 2007; 52(2): 365–373.

37

Cai J, Read PW, Larner JM, Jones DR, Benedict SH, Sheng K. Reproducibility of interfraction lung motion probability distribution function using dynamic MRI: statistical analysis. Int J Radiat Oncol Biol Phys. 2008; 72(4): 1228–1235.

38

Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol. 2018; 63(21): 21TR01. https://doi.org/10.1088/1361-6560/aae56d

39

Liu Y, Zhong X, Czito BG, et al. Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study. Med Phys. 2017; 44(2): 397–406.

40

Liu Y, Yin FF, Czito BG, Bashir MR, Cai J. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting. Med Phys. 2015; 42(8): 4460–4471.

41

Yang J, Cai J, Wang H, et al. Is diaphragm motion a good surrogate for liver tumor motion? Int J Radiat Oncol Biol Phys. 2014; 90(4): 952–958.

42

Keijnemans K, Borman PTS, van Lier A LHMW, Verhoeff JJC, Raaymakers BW, Fast MF. Simultaneous multi-slice accelerated 4D-MRI for radiotherapy guidance. Phys Med Biol. 2021; 66: (9): 095014. https://doi.org/10.1088/1361-6560/abf591

43

Navest RJM, Mandija S, Bruijnen T, et al. The noise navigator: a surrogate for respiratory-correlated 4D-MRI for motion characterization in radiotherapy. Phys Med Biol. 2020; 65(1): 01NT02. https://doi.org/10.1088/1361-6560/ab5c62

44

Yang J, Cai J, Wang H, et al. Four-dimensional magnetic resonance imaging using axial body area as respiratory surrogate: initial patient results. Int J Radiat Oncol Biol Phys. 2014; 88(4): 907–912.

45

Li G, Wei J, Olek D, et al. Direct comparison of respiration-correlated four-dimensional magnetic resonance imaging reconstructed using concurrent internal navigator and external bellows. Int J Radiat Oncol Biol Phys. 2017; 97(3): 596–605.

46

Yuan J, Wong OL, Zhou Y, Chueng KY, Yu SK. A fast volumetric 4D-MRI with sub-second frame rate for abdominal motion monitoring and characterization in MRI-guided radiotherapy. Quant Imaging Med Surg. 2019; 9(7): 1303–1314.

47

van de Lindt TN, Fast MF, van den Wollenberg W, et al. Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac. Phys Med Biol. 2021; 66(10): 105010. 10.1088/1361-6560/abfada

48
Hall WA, Straza MW, Chen X, et al. Initial clinical experience of stereotactic body radiation therapy (SBRT) for liver metastases, primary liver malignancy, and pancreatic cancer with 4D-MRI based online adaptation and real-time MRI monitoring using a 1.5 T MR-Linac [published correction appears in PLoS One. 2020 Nov 4;15(11): e0242146]. PLoS One. 2020; 15(8): e0236570. https://doi.org/10.1371/journal.pone.0236570. Published Aug 7, 2020.
49

Harris W, Yin FF, Cai J, Ren L. Volumetric cine magnetic resonance imaging (VC-MRI) using motion modeling, free-form deformation and multi-slice undersampled 2D cine MRI reconstructed with spatio-temporal low-rank decomposition. Quant Imaging Med Surg. 2020; 10(2): 432–450.

50

Harris W, Wang C, Yin FF, Cai J, Ren L. A novel method to generate on-board 4D MRI using prior 4D MRI and on-board kV projections from a conventional LINAC for target localization in liver SBRT. Med Phys. 2018; 45(7): 3238–3245.

51

Harris W, Ren L, Cai J, Zhang Y, Chang Z, Yin FF. A technique for generating volumetric cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2016; 95(2): 844–853.

52

Xiao H, Teng X, Liu C, et al. A review of deep learning-based three-dimensional medical image registration methods. Quant Imaging Med Surg. 2021; 11(12): 4895–4916.

53

van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging. 2020; 11(1): 91. https://doi.org/10.1186/s13244-020-00887-2

54

Sheikh K, Lee SH, Cheng Z, et al. Predicting acute radiation induced xerostomia in head and neck cancer using MR and CT radiomics of parotid and submandibular glands. Radiat Oncol. 2019; 14(1): 131. https://doi.org/10.1186/s13014-019-1339-4

55

Jeon SH, Song C, Chie EK, et al. Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol. 2019; 14(1): 43. https://doi.org/10.1186/s13014-019-1246-8

56

Boldrini L, Cusumano D, Chiloiro G, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019; 124(2): 145–153.

57

Chiloiro G, Rodriguez-Carnero P, Lenkowicz J, et al. Delta radiomics can predict distant metastasis in locally advanced rectal cancer: the challenge to personalize the cure. Front Oncol. 2020; 10: 595012. https://doi.org/10.3389/fonc.2020.595012

58

Gugliandolo SG, Pepa M, Isaksson LJ, et al. MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase Ⅱ trial on ultra-hypofractionated radiotherapy (AIRC IG-13218). Eur Radiol. 2021; 31(2): 716–728.

59

Hou J, Li H, Zeng B, et al. MRI-based radiomics nomogram for predicting temporal lobe injury after radiotherapy in nasopharyngeal carcinoma [published online ahead of print, Aug 31, 2021]. Eur Radiol. 2021. https://doi.org/10.1007/s00330-021-08254-5(2021)

60

Yu TT, Lam SK, To LH, et al. pretreatment prediction of adaptive radiation therapy eligibility using MRI-based radiomics for advanced nasopharyngeal carcinoma patients. Front Oncol. 2019; 9: 1050. https://doi.org/10.3389/fonc.2019.01050

61

Xue C, Yuan J, Poon DM, et al. Reliability of MRI radiomics features in MR-guided radiotherapy for prostate cancer: repeatability, reproducibility, and within-subject agreement. Med Phys. 2021; 48(11): 6976–6986.

62

Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495(7440): 187–192.

63

Lu L, Chen Y, Shen C, et al. Initial assessment of 3D magnetic resonance fingerprinting (MRF) towards quantitative brain imaging for radiation therapy. Med Phys. 2020; 47(3): 1199–1214.

64

Panda A, Chen Y, Ropella-Panagis K, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging. 2019; 50(4): 1133–1143.

65

Bruijnen T, van der Heide O, Intven MPW, et al. Technical feasibility of magnetic resonance fingerprinting on a 1.5 T MRI-linac. Phys Med Biol. 2020; 65(22): 22NT01. https://doi.org/10.1088/1361-6560/abbb9d

66

Li T, Cui D, Hui ES, Cai J. Time-resolved magnetic resonance fingerprinting for radiotherapy motion management [published correction appears in Med Phys. 2021 May; 48(5): 2698]. Med Phys. 2020; 47(12): 6286–6293.

67

Li T, Cui D, Ren G, Hui ES, Cai J. Investigation of the effect of acquisition schemes on time-resolved magnetic resonance fingerprinting. Phys Med Biol. 2021; 66(9). 10.1088/1361-6560/abf51f

Precision Radiation Oncology
Pages 75-84
Cite this article:
Liu C, Li M, Xiao H, et al. Advances in MRI-guided precision radiotherapy. Precision Radiation Oncology, 2022, 6(1): 75-84. https://doi.org/10.1002/pro6.1143

480

Views

9

Crossref

9

Scopus

Altmetrics

Received: 28 October 2021
Accepted: 29 December 2021
Published: 22 January 2022
© 2022 The Authors. Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Return