AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Carbon ion radiotherapy in the management of non-small cell lung cancer

Danushka Seneviratne1Hitoshi Ishikawa2Jingfang Mao3Jingjing M. Dougherty1Aaron Bush1Mathew Thomas4Rami Manochakian5Yanyan Lou5Dawn Owen6Terence T. Sio7Jessica Kirwan8Stephen J. Ko1Bradford S. Hoppe1 ( )
Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
QST Hospital National Institutes for Quantum Science and Technology, Chiba, Japan
Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
Department of Cardiothoracic Surgery, Mayo Clinic Florida, Jacksonville, Florida, USA
Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
Department of Radiation Oncology, Mayo Clinic Minnesota, Rochester, Minnesota, USA
Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
Show Author Information

Abstract

Despite advancements in local-regional and systemic therapies, non-small cell cancer (NSCLC) remains a leading cause of death worldwide. Among those treated with standard-of-care modalities, 30–60% experience disease recurrence. Carbon ion radiotherapy (CIRT) is a form of densely ionizing radiotherapy with unique physical and biological advantages over traditional photon and proton modalities. CIRT is expected to have a superior biological impact on tumors, and is believed to be less impacted by the presence of tumor hypoxia or cell cycle state. It also shows highly conformal physical dose deposition due to reduced lateral scattering of the particles, limiting the radiation dose delivered to adjacent organs at risk. To implement CIRT as a viable option in the treatment of NSCLC, technical aspects of treatment delivery –including appropriate beam arrangements, dose calculation algorithms, radiobiological models, and methods of motion management –must be thoroughly investigated. Furthermore, randomized clinical trials comparing CIRT versus traditional radiation modalities must be performed to show the benefits and risks associated with this novel treatment modality. This review discusses the rationale for utilizing CIRT in NSCLC, available clinical data to date, and the potential for future investigations that may pave the path for improving outcomes in those diagnosed with NSCLC.

References

1

Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021; 398(10299): 535-554. https://doi.org/10.1016/S0140-6736(21)00312-3.

2

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: Cancer J Clin. 2020; 70(1): 7-30. https://doi.org/10.3322/caac.21590.

3

Pan HY, Haffty BG, Falit BP, et al. Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys. 2016; 96(3): 493-500. https://doi.org/10.1016/j.ijrobp.2016.02.064.

4

Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015; 1(1): 1-16. https://doi.org/10.1038/nrdp.2015.9.

5

Wieland J, Hoppe BS, Rausch-Osian SM, et al. Survivor and caregiver expectations and preferences regarding lung cancer treatment. Int J Part Ther. 2019; 6(2): 42-49. https://doi.org/10.14338/IJPT-19-00072.1.

6

Verma V, Shostrom VK, Kumar SS, et al. Multi-institutional experience of stereotactic body radiotherapy for large (≥5 cm) non-small cell lung tumors. Cancer. 2017; 123(4): 688-696. https://doi.org/10.1002/cncr.30375.

7

Wang C, Rimner A, Gelblum DY, et al. Analysis of pneumonitis and esophageal injury after stereotactic body radiation therapy for ultra-central lung tumors. Lung Cancer. 2020; 147: 45-48. https://doi.org/10.1016/j.lungcan.2020.07.009.

8
Daly ME, Singh N, Ismaila N, et al. Management of stage Ⅲ non-small-cell lung cancer: ASCO guideline. J Clin Oncol. 2021. https://doi.org/10.1200/JCO.21.02528. Published online December 22, 2021:JCO2102528.
9

Huber RM, Ruysscher DD, Hoffmann H, Reu S, Tufman A. Interdisciplinary multimodality management of stage Ⅲ non-small cell lung cancer. Eur Respir Rev. 2019; 28(152). https://doi.org/10.1183/16000617.0024-2019.

10

Majem M, Hernández-Hernández J, Hernando-Trancho F, et al. Multidisciplinary consensus statement on the clinical management of patients with stage Ⅲ non-small cell lung cancer. Clin Transl Oncol. 2020; 22(1): 21-36. https://doi.org/10.1007/s12094-019-02134-7.

11

Verma V, Simone CB, Werner-Wasik M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers (Basel). 2017; 9(9): 120. https://doi.org/10.3390/cancers9090120.

12

Bradley JD, Hu C, Komaki RR, et al. Long-term results of NRG oncology RTOG 0617: standard-versus high-dose chemoradiotherapy with or without cetuximab for unresectable Stage Ⅲ non-small-cell lung cancer. J Clin Oncol. 2020; 38(7): 706-714. https://doi.org/10.1200/JCO.19.01162.

13

Faivre-Finn C, Vicente D, Kurata T, et al. Four-year survival with durvalumab after chemoradiotherapy in stage Ⅲ NSCLC—an update from the PACIFIC trial. J Thorac Oncol. 2021; 16(5): 860-867. https://doi.org/10.1016/j.jtho.2020.12.015.

14

Demizu Y, Fujii O, Iwata H, Fuwa N. Carbon ion therapy for early-stage non-small-cell lung cancer. Biomed Res Int. 2014; 2014: 727962. https://doi.org/10.1155/2014/727962.

15

Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon ion therapy: a modern review of an emerging technology. Front Oncol. 2020; 10: 82. https://doi.org/10.3389/fonc.2020.00082.

16

Kim J, Park JM, Wu HG. Carbon ion therapy: a review of an advanced technology. Korean Soc Med Phys. 2020; 31(3): 71-80. https://doi.org/10.14316/pmp.2020.31.3.71.

17

Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017; 63(1): 01TR02. https://doi.org/10.1088/1361-6560/aa9102.

18

Friedman GK, Dhall G. Potential role of carbon ion radiotherapy in chromothripsis-induced medulloblastoma and other malignancies. Neuro Oncol. 2021; 23(12): 1991. https://doi.org/10.1093/neuonc/noab232.

19

Virsik-Köpp P, Hofman-Huether H. Chromosome aberrations induced by high-LET carbon ions in radiosensitive and radioresistant tumour cells. Cytogenet Genome Res. 2004; 104(1-4): 221-226. https://doi.org/10.1159/000077493.

20

Salem A, Asselin MC, Reymen B, et al. Targeting hypoxia to improve non-small cell lung cancer outcome. JNCI: J Natl Cancer Inst. 2018; 110(1): 14-30. https://doi.org/10.1093/jnci/djx160.

21

van Elmpt W, De Ruysscher D, van der Salm A, et al. The PET-boost randomised phase Ⅱ dose-escalation trial in non-small cell lung cancer. Radiother Oncol. 2012; 104(1): 67-71. https://doi.org/10.1016/j.radonc.2012.03.005.

22

Haslett K, Franks K, Hanna GG, et al. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage Ⅲ non-small cell lung cancer (NSCLC): a feasibility study. BMJ Open. 2016; 6(4): e010457. https://doi.org/10.1136/bmjopen-2015-010457.

23

Zharkov VV, Merkle KK, Gentshel M, et al. The immediate results of the use of isometronidazole in the combination therapy of patients with lung cancer. Med Radiol (Mosk). 1991; 36(7): 18-20.

24

Simpson JR, Perez CA, Phillips TL, Concannon JP, Carella RJ. Large fraction radiotherapy plus misonidazole for treatment of advanced lung cancer: report of a phase Ⅰ/Ⅱ trial. Int J Radiat Oncol Biol Phys. 1982; 8(2): 303-308. https://doi.org/10.1016/0360-3016(82)90532-6.

25

Klein C, Dokic I, Mairani A, et al. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation. Radiat Oncol. 2017; 12(1): 208. https://doi.org/10.1186/s13014-017-0939-0.

26

Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 2019; 11(1): 40. https://doi.org/10.1186/s13073-019-0653-7.

27

Lockney NA, Zhang M, Morris CG, et al. Radiation-induced tumor immunity in patients with non-small cell lung cancer. Thorac Cancer. 2019; 10(7): 1605-1611. https://doi.org/10.1111/1759-7714.13122.

28

Durante M, Brenner DJ, Formenti SC. Does heavy ion therapy work through the immune system?. Int J Radiat Oncol Biol Phys. 2016; 96(5): 934-936. https://doi.org/10.1016/j.ijrobp.2016.08.037.

29

Akino Y, Teshima T, Kihara A, et al. Carbon-ion beam irradiation effectively suppresses migration and invasion of human non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys. 2009; 75(2): 475-481. https://doi.org/10.1016/j.ijrobp.2008.12.090.

30

Ogata T, Teshima T, Kagawa K, et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 2005; 65(1): 113-120.

31

Woody NM, Stephans KL, Marwaha G, Djemil T, Videtic GMM. Stereotactic body radiation therapy for non-small cell lung cancer tumors greater than 5 cm: safety and efficacy. Int J Radiat Oncol Biol Phys. 2015; 92(2): 325-331. https://doi.org/10.1016/j.ijrobp.2015.01.045.

32

Shamp SJ, Sheikh S, Chang T, et al. Stereotactic body radiotherapy (SBRT) for T2N0 (> 3 cm) non-small cell lung cancer: outcomes and failure patterns. J Radiosurg SBRT. 2021; 7(4): 271-277.

33

Sio TT, Mohindra P, Yu NY, et al. The search for optimal stereotactic body radiotherapy dose in inoperable, centrally located non-small-cell lung cancer continues. J Clin Oncol. 2019; 37(29): 2697-2699. https://doi.org/10.1200/JCO.19.01330.

34

Miyamoto T, Baba M, Yamamoto N, et al. Curative treatment of Stage Ⅰ non–small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Bio Phys. 2007; 67(3): 750-758. https://doi.org/10.1016/j.ijrobp.2006.10.006.

35

Koto M, Miyamoto T, Yamamoto N, Nishimura H, Yamada S, Tsujii H. Local control and recurrence of stage Ⅰ non-small cell lung cancer after carbon ion radiotherapy. Radiother Oncol. 2004; 71(2): 147-156. https://doi.org/10.1016/j.radonc.2004.02.007.

36

Yamamoto N, Miyamoto T, Nakajima M, et al. A dose escalation clinical trial of single-fraction carbon ion radiotherapy for peripheral Stage Ⅰ non-small cell lung cancer. J Thorac Oncol. 2017; 12(4): 673-680. https://doi.org/10.1016/j.jtho.2016.12.012.

37

Saitoh JI, Shirai K, Mizukami T, et al. Hypofractionated carbon-ion radiotherapy for stage Ⅰ peripheral non-small cell lung cancer (GUNMA0701): prospective phase Ⅱ study. Cancer Med. 2019; 8(15): 6644-6650. https://doi.org/10.1002/cam4.2561.

38

Sugane T, Baba M, Imai R, et al. Carbon ion radiotherapy for elderly patients 80 years and older with stage Ⅰ non-small cell lung cancer. Lung Cancer. 2009; 64(1): 45-50. https://doi.org/10.1016/j.lungcan.2008.07.007.

39

Miyasaka Y, Komatsu S, Abe T, et al. Comparison of oncologic outcomes between carbon ion radiotherapy and stereotactic body radiotherapy for early-stage non-small cell lung cancer. Cancers (Basel). 2021; 13(2): 176. https://doi.org/10.3390/cancers13020176.

40

Nichols RC, Henderson RH, Huh S, et al. Proton therapy for lung cancer. Thorac Cancer. 2012; 3(2): 109-116. https://doi.org/10.1111/j.1759-7714.2011.00098.x.

41

Hoppe BS, Nichols RC, Flampouri S, et al. Hypofractionated proton therapy with concurrent chemotherapy for locally advanced non-small cell lung cancer: a Phase 1 trial from the University of Florida and Proton Collaborative Group. Int J Radiat Oncol Biol Phys. 2020; 107(3): 455-461. https://doi.org/10.1016/j.ijrobp.2020.03.015.

42

Urbanic JJ, Wang X, Bogart JA, et al. Phase 1 Study of accelerated hypofractionated radiation therapy with concurrent chemotherapy for Stage Ⅲ non-small cell lung cancer: cALGB 31102 (Alliance). Int J Radiat Oncol Biol Phys. 2018; 101(1): 177-185. https://doi.org/10.1016/j.ijrobp.2018.01.046.

43

Hayashi K, Yamamoto N, Nakajima M, et al. Clinical outcomes of carbon-ion radiotherapy for locally advanced non-small-cell lung cancer. Cancer Sci. 2019; 110(2): 734-741. https://doi.org/10.1111/cas.13890.

Precision Radiation Oncology
Pages 69-74
Cite this article:
Seneviratne D, Ishikawa H, Mao J, et al. Carbon ion radiotherapy in the management of non-small cell lung cancer. Precision Radiation Oncology, 2022, 6(1): 69-74. https://doi.org/10.1002/pro6.1146

377

Views

4

Crossref

4

Scopus

Altmetrics

Received: 16 February 2022
Accepted: 17 February 2022
Published: 22 March 2022
© 2022 The Authors. Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return