AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response

Kwun Lam Wong1,2Ka Hei Cheng1Sai Kit Lam1Chenyang Liu1Jing Cai1( )
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
Department of Radiotherapy, Hong Kong Sanatorium & Hospital, HKSH Medical Group, Hong Kong SAR, People’s Republic of China
Show Author Information

Abstract

Nasopharyngeal carcinoma (NPC) is a common malignancy endemic in South-East Asia. Functional magnetic resonance imaging (fMRI) has been used for prompt detection of treatment response before visible morphological changes in NPC treatment. Among different fMRI techniques, diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) were proved to be more successful in NPC treatment response assessment whilst the application of magnetic resonance spectroscopy (MRS) remains questionable. Apart from discussing the imaging technique, time points for post-treatment response assessments are recommended. Four instead of three months is recommended for prompt identification of non- or partial responders and 6–9 months post-treatment multiparametric MRI is also recommended for effective confirmation of complete responding individuals to avoid residual disease. For future advancement, in addition to the post-treatment response assessment, continuous or longitudinal assessment on the treatment response with the use of magnetic resonance simulator (MR-simulator) or magnetic resonace imaging guided linear accelerator (MR-Linac) tailor-made for radiotherapy (RT) maybe feasible. Longitudinal assessments or predictive radiomics modeling allow spotting out the possibility of treatment failure before the completion or even before the start of treatments. Adaptive instead of salvage treatments can then be prepared, thus reducing the damage and side effects of consecutive cytotoxic treatments.

References

2

Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016; 387(10022): 1012-1024.

3

Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005; 365(9476): 2041-2054.

4

Nicholls JM. Nasopharyngeal carcinoma classification and histological appearances. Adv Anat Pathol. 1997; 4(2): 71-84.

5

Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001; 3(1): 1-10.

6

Peng G, Wang T, Yang KY, et al. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol. 2012; 104(3): 286-293.

7

Au KH, Ngan RKC, Ng AWY, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: a report of 3328 patients (HKNPCSG 1301 study). Oral Oncol. 2018; 77: 16-21.

8

Chen Y, Liu X, Zheng D, et al. Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging. 2014; 32(6): 630-637.

9

Zheng D, Yue Q, Ren W, et al. Early responses assessment of neoadjuvant chemotherapy in nasopharyngeal carcinoma by serial dynamic contrast-enhanced MR imaging. Magn Reson Imaging. 2017; 35: 125-131.

10

Cheung AL, Zhang L, Liu C, et al. Evaluation of multisource adaptive MRI fusion for gross tumor volume delineation of hepatocellular carcinoma. Front Oncol. 2022; 12:816678. https://doi.org/10.3389/fonc.2022.816678

11

Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992; 89(12): 5675-5679.

12

Powell C, Schmidt M, Borri M, et al. Changes in functional imaging parameters following induction chemotherapy have important implications for individualised patient-based treatment regimens for advanced head and neck cancer. Radiother Oncol. 2013; 106(1): 112-117.

13

Zheng D, Chen Y, Liu X, et al. Early response to chemoradiotherapy for nasopharyngeal carcinoma treatment: value of dynamic contrast-enhanced 3.0 T MRI. J Magn Reson Imaging. 2015; 41(6): 1528-1540.

14

Rana S, Albayram S, Lin DD, Yousem DM. Diffusion-weighted imaging and apparent diffusion coefficient maps in a case of intracerebral abscess with ventricular extension. Am J Neuroradiol. 2002; 23(1): 109-112.

15

Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45(2): 228-247.

16

Makino H, Kato H, Furui T, Morishige K, Kanematsu M. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for uterine cervical cancer. J Obstet Gynaecol Res. 2014; 40(4): 1098-1104.

17

Vandecaveye V, Dirix P, De Keyzer F, et al. Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2012; 82(3): 1098-1107.

18

Galbán CJ, Mukherji SK, Chenevert TL, et al. A feasibility study of parametric response map analysis of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy [published correction appears in Transl Oncol. 2009 Dec;2(4):350]. Transl Oncol. 2009; 2(3): 184-190.

19

Hirshoren N, Damti S, Weinberger J, et al. Diffusion weighted magnetic resonance imaging of pre and post treatment nasopharyngeal carcinoma. Surg Oncol. 2019; 30: 122-125.

20

Tu N, Zhong Y, Wang X, Xing F, Chen L, Wu G. Treatment response prediction of nasopharyngeal carcinoma based on histogram analysis of diffusional kurtosis imaging. Am J Neuroradiol. 2019; 40(2): 326-333.

21

Atri M. New technologies and directed agents for applications of cancer imaging. J Clin Oncol. 2006; 24(20): 3299-3308.

22

Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999; 10(3): 223-232.

23

Jesberger JA, Rafie N, Duerk JL, et al. Model-free parameters from dynamic contrast-enhanced-MRI: sensitivity to EES volume fraction and bolus timing. J Magn Reson Imaging. 2006; 24(3): 586-594.

24

Walker-Samuel S, Leach MO, Collins DJ. Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol. 2006; 51(14): 3593-3602.

25

Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992; 5(5): 303-324.

26

Gharzeddine K, Hatzoglou V, Holodny AI, Young RJ. MR perfusion and MR spectroscopy of brain neoplasms. Radiol Clin North Am. 2019; 57(6): 1177-1188.

27

Shukla G, Alexander GS, Bakas S, et al. Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol. 2017; 6(4): 40.

28

Sitter B, Sjøbakk TE, Larsson HBW, Kvistad KA. Clinical MR spectroscopy of the brain. Klinisk MR-spektroskopi av hjernen. Tidsskr Nor Laegeforen. 2019; 139(6). https://doi.org/10.4045/tidsskr.17.1099

29

Kwek JW, Thng CH. MR imaging and MR spectroscopy of adenocarcinoma of the prostate. Ann Acad Med Singap. 2003; 32(4): 500-506.

30

Mueller-Lisse UG, Scherr MK. Proton MR spectroscopy of the prostate. Eur J Radiol. 2007; 63(3): 351-360.

31

Baltzer PA, Dietzel M. Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T – systematic review and meta-analysis. Radiology. 2013; 267(3): 735-746.

32

Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: technical innovations and clinical applications. J Magn Reson Imaging. 2019; 50(4): 1033-1046.

33

Sardanelli F, Fausto A, Podo F. MR spectroscopy of the breast. Radiol Med. 2008; 113(1): 56-64.

34

Shukla-Dave A, Poptani H, Loevner LA, et al. Prediction of treatment response of head and neck cancers with P-31 MR spectroscopy from pretreatment relative phosphomonoester levels. Acad Radiol. 2002; 9(6): 688-694.

35

King AD, Yeung DK, Ahuja AT, Leung SF, Tse GM, van Hasselt AC. In vivo proton MR spectroscopy of primary and nodal nasopharyngeal carcinoma. Am J Neuroradiol. 2004; 25(3): 484-490.

36

Jones KM, Michel KA, Bankson JA, Fuller CD, Klopp AH, Venkatesan AM. Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int J Radiat Oncol Biol Phys. 2018; 101(5): 1046-1056.

37

Xiao-ping Y, Jing H, Fei-ping L, et al. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma. J Magn Reson Imaging. 2016; 43(5): 1179-1190.

38

Hou J, Yu X, Hu Y, et al. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma. Medicine (Baltimore). 2016; 95(35):e4320. https://doi.org/10.1097/MD.0000000000004320

39

Marzi S, Forina C, Marucci L, et al. Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands. J Magn Reson Imaging. 2015; 41(4): 974-982.

40

Lai V, Li X, Lee VH, Lam KO, Chan Q, Khong PL. Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis. Eur Radiol. 2013; 23(10): 2793-2801.

41

Krishna MC, Subramanian S, Kuppusamy P, Mitchell JB. Magnetic resonance imaging for in vivo assessment of tissue oxygen concentration. Semin Radiat Oncol. 2001; 11(1): 58-69.

42

Linnik IV, Scott ML, Holliday KF, et al. Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. Magn Reson Med. 2014; 71(5): 1854-1862.

43

Rakow-Penner R, Daniel B, Glover GH. Detecting blood oxygen level-dependent (BOLD) contrast in the breast. J Magn Reson Imaging. 2010; 32(1): 120-129.

44

Kim CK, Park SY, Park BK, Park W, Huh SJ. Blood oxygenation level-dependent MR imaging as a predictor of therapeutic response to concurrent chemoradiotherapy in cervical cancer: a preliminary experience. Eur Radiol. 2014; 24(7): 1514-1520.

45

Alonzi R, Padhani AR, Maxwell RJ, et al. Carbogen breathing increases prostate cancer oxygenation: a translational MRI study in murine xenografts and humans. Br J Cancer. 2009; 100(4): 644-648.

46

Yip C, Cook GJ, Wee J, Fong KW, Tan T, Goh V. Clinical significance of hypoxia in nasopharyngeal carcinoma with a focus on existing and novel hypoxia molecular imaging. Chin Clin Oncol. 2016; 5(2): 24.

47

Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol. 2016; 26(12): 4390-4403.

48

Dula AN, Arlinghaus LR, Dortch RD, et al. Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med. 2013; 70(1): 216-224.

49

Nishie A, Asayama Y, Ishigami K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer. J Gastroenterol Hepatol. 2019; 34(1): 140-146.

50

Qamar S, King AD, Ai QY, et al. Amide proton transfer MRI detects early changes in nasopharyngeal carcinoma: providing a potential imaging marker for treatment response. Eur Arch Otorhinolaryngol. 2019; 276(2): 505-512.

51

Qamar S, King AD, Ai QH, et al. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur Radiol. 2020; 30(11): 6339-6347.

52

Song Q, Chen P, Chen X, et al. Dynamic change of amide proton transfer imaging in irradiated nasopharyngeal carcinoma and related histopathological mechanism. Mol Imaging Biol. 2021; 23(6): 846-853.

53

Chan AT, Grégoire V, Lefebvre JL, et al. Nasopharyngeal cancer: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23(Suppl 7): vii83-vii85.

54

Simo R, Robinson M, Lei M, Sibtain A, Hickey S. Nasopharyngeal carcinoma: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016; 130(S2): S97-S103.

55

Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018. J Natl Compr Canc Netw. 2018; 16(5): 479-490.

56

Kwong DL, Nicholls J, Wei WI, et al. The time course of histologic remission after treatment of patients with nasopharyngeal carcinoma. Cancer. 1999; 85(7): 1446-1453.

57

Li WF, Zhang Y, Liu X, et al. Delayed clinical complete response to intensity-modulated radiotherapy in nasopharyngeal carcinoma. Oral Oncol. 2017; 75: 120-126.

58

Kong M, Hong SE. Tumor regression patterns by follow-up duration in patients with nasopharyngeal carcinoma treated with concurrent chemoradiotherapy. J Radiat Res. 2017; 58(2): 232-237.

59

Meng K, Tey J, Ho FCH, Asim H, Cheo T. Utility of magnetic resonance imaging in determining treatment response and local recurrence in nasopharyngeal carcinoma treated curatively. BMC Cancer. 2020; 20(1): 193.

60

Forslin Y, Martola J, Bergendal Å, Fredrikson S, Wiberg MK, Granberg T. Gadolinium retention in the brain: an MRI relaxometry study of linear and macrocyclic gadolinium-based contrast agents in multiple sclerosis. Am J Neuroradiol. 2019; 40(8): 1265-1273.

61

Lim WH, Choi SH, Yoo RE, et al. Does radiation therapy increase gadolinium accumulation in the brain? Quantitative analysis of T1 shortening using R1 relaxometry in glioblastoma multiforme patients. PLoS One. 2018; 13(2):e0192838. https://doi.org/10.1371/journal.pone.0192838

62

Li W, Xiao H, Li T, et al. Virtual contrast-enhanced magnetic resonance images synthesis for patients with nasopharyngeal carcinoma using multimodality-guided synergistic neural network. Int J Radiat Oncol Biol Phys. 2022; 112(4): 1033-1044.

63

Mui AWL, Lee AWM, Lee VHF, et al. Prognostic and therapeutic evaluation of nasopharyngeal carcinoma by dynamic contrast-enhanced (DCE), diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Magn Reson Imaging. 2021; 83: 50-56.

64

Yang Y, Cao M, Sheng K, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016; 43(3): 1369-1373.

65

Liu C, Li M, Xiao H, et al. Advances in MRI-guided precision radiotherapy. Prec Radiat Oncol. 2022; 6: 75-84.

66

Devic S. MRI simulation for radiotherapy treatment planning. Med Phys. 2012; 39(11): 6701-6711.

67

Xiao H, Ni R, Zhi S, et al. A dual-supervised deformation estimation model (DDEM) for constructing ultra-quality 4D-MRI based on a commercial low-quality 4D-MRI for liver cancer radiation therapy. [published online ahead of print, 2022 Feb 16]. Med Phys. 2022; 49(5): 3159-3170. https://doi.org/10.1002/mp.15542

68

Kooreman ES, van Houdt PJ, Nowee ME, et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol. 2019; 133: 156-162.

69

Kooreman ES, van Houdt PJ, Keesman R, et al. ADC measurements on the Unity MR-linac -A recommendation on behalf of the Elekta Unity MR-linac consortium. Radiother Oncol. 2020; 153: 106-113.

70

Lam SK, Zhang Y, Zhang J, et al. Multi-Organ omics-based prediction for adaptive radiation therapy eligibility in nasopharyngeal carcinoma patients undergoing concurrent chemoradiotherapy. Front Oncol. 2022; 11:792024. https://doi.org/10.3389/fonc.2021.792024

71

van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging. 2020; 11(1): 91.

72

Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017; 403: 21-27.

73

Zhang L, Dong D, Li H, et al. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedicine. 2019; 40: 327-335.

74
Duan W, Xiong B, Tian T, Zou X, He Z, Zhang L. Clin Med Insights Oncol. 2022; 16:11795549221079186.
75

Zhang B, Ouyang F, Gu D, et al. Advanced nasopharyngeal carcinoma: pre-treatment prediction of progression based on multi-parametric MRI radiomics. Oncotarget. 2017; 8(42): 72457-72465.

76

Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017; 23(15): 4259-4269.

77

Hou J, Li H, Zeng B, et al. MRI-based radiomics nomogram for predicting temporal lobe injury after radiotherapy in nasopharyngeal carcinoma. Eur Radiol. 2022; 32(2): 1106-1114.

78

Zhang B, Lian Z, Zhong L, et al. Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer. 2020; 20(1): 502.

79

Zhu C, Huang H, Liu X, et al. A clinical-radiomics nomogram based on computed tomography for predicting risk of local recurrence after radiotherapy in nasopharyngeal carcinoma. Front Oncol. 2021; 11:637687. https://doi.org/10.3389/fonc.2021.637687

80
Yan C, Shen DS, Chen XB, et al. Cancer Manag Res. 2021; 13: 6911-6923.
81

Yu TT, Lam SK, To LH, et al. Pretreatment prediction of adaptive radiation therapy eligibility using MRI-based radiomics for advanced nasopharyngeal carcinoma patients. Front Oncol. 2019; 9:1050. https://doi.org/10.3389/fonc.2019.01050

82

Xue C, Yuan J, Poon DM, et al. Reliability of MRI radiomics features in MR-guided radiotherapy for prostate cancer: repeatability, reproducibility, and within-subject agreement. Med Phys. 2021; 48(11): 6976-6986.

Precision Radiation Oncology
Pages 177-185
Cite this article:
Wong KL, Cheng KH, Lam SK, et al. Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. Precision Radiation Oncology, 2022, 6(2): 177-185. https://doi.org/10.1002/pro6.1161

374

Views

1

Crossref

1

Scopus

Altmetrics

Received: 15 March 2022
Revised: 29 April 2022
Accepted: 04 May 2022
Published: 30 May 2022
© 2022 The Authors. Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Return