Abstract
The 3-ary n-cube, denoted as
Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The 3-ary n-cube, denoted as
Hsu L H, Lin C K. Graph Theory and Interconnection Networks (1st edition). CRC, 2008.
Gu M M, Hao R X. 3-extra connectivity of 3-ary n-cube networks. Information Processing Letters, 2014, 114(9): 486-491.
Yang Y, Wang S. A note on Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Information Sciences, 2015, 296(c): 42-45.
Hsieh S Y, Lin T J, Huang H L. Panconnectivity and edge-pancyclicity of 3-ary N-cubes. The Journal of Supercomputing, 2007, 42(2): 225-233.
Dong Q, Yang X, Wang D. Embedding paths and cycles in 3-ary n-cubes with faulty nodes and links. Information Sciences, 2010, 180(1): 198-208.
Lv Y, Lin C K, Fan J, Jia X. Hamiltonian cycle and path embeddings in 3-ary n-cubes based on K1,3-structure faults. Journal of Parallel and Distributed Computing. 2018, 120: 148-158.
Yuan J, Liu A, Qin X, Zhang J, Li J. g-Good-neighbor conditional diagnosability measures for 3-ary n-cube networks. Theoretical Computer Science, 2016, 626: 144-162.
Abu-Libdeh H, Costa P, Rowstron A, O’Shea G, Donnelly A. Symbiotic routing in future data centers. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 51-62.
Cheng B, Fan J, Jia X, Jia J. Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes. The Journal of Supercomputing, 2013, 65(3): 1279-1301.
Wang X, Fan J, Jia X, Zhang S, Yu J. Embedding meshes into twisted-cubes. Information Sciences, 2011, 181(14): 3085-3099.
Wang D. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel and Distributed Systems, 2012, 23(11): 2117-2124.
Wang S, Li J, Wang R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Information Sciences, 2011, 181(14): 3054-3065.
Fan J, Jia X, Lin X. Complete path embeddings in crossed cubes. Information Sciences, 2006, 176(22): 3332-3346.
Fan J, Jia X, Lin X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica, 2008, 51(3): 264-282.
Han Y, Fan J, Zhang S et al. Embedding meshes into locally twisted cubes. Information Sciences, 2010, 180(19): 3794-3805.
Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness (1st edition). W. H. Freeman, 1979.
Nakano K. Linear layout of generalized hypercubes. International Journal of Foundations of Computer Science, 2003, 14(1): 137-156.
Miller M, Rajan R S, Parthiban N, Rajasingh I. Minimum linear arrangement of incomplete hypercubes. The Computer Journal, 2015, 58(2): 331-337.
Chen Y, Shen H. Routing and wavelength assignment for hypercube in array-based WDM optical networks. Journal of Parallel and Distributed Computing, 2010, 70(1): 59-68.
Yu C, Yang X, Yang L X, Zhang J. Routing and wavelength assignment for 3-ary n-cube in array-based optical network. Information Processing Letters, 2012, 112(6): 252-256.
Liu Y L. Routing and wavelength assignment for exchanged hypercubes in linear array optical networks. Information Processing Letters, 2015, 115(2): 203-208.
Wang Z, Gu H, Yang Y, Zhang H, Chen Y. An adaptive partition-based multicast routing scheme for mesh-based networks-on-chip. Computers and Electrical Engineering, 2016, 51: 235-251
Xiang D, Chakrabarty K, Fujiwara H. Multicast-based testing and thermal-aware test scheduling for 3D ICs with a stacked network-on-chip. IEEE Trans. Computers, 2016, 65(9): 2767-2779.
Xiang D, Liu X. Deadlock-free broadcast routing in dragonfly networks without virtual channels. IEEE Trans. Parallel and Distributed Systems, 2016, 27(9): 2520-2532.
Xiang D, Zhang Y, Pan Y. Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model. IEEE Trans. Computers, 2009, 58(5): 620-633.
Xiang D, Luo W. An efficient adaptive deadlock-free routing algorithm for torus networks. IEEE Trans. Parallel and Distributed Systems, 2012, 23(5): 800-808.
Bezrukov S L, Chavez J D, Harper L H, Röttger M, Schroeder U P. The congestion of n-cube layout on a rectangular grid. Discrete Mathematics, 2000, 213(1/2/3): 13-19.
Heckmann R, Klasing R, Monien B, Unger W. Optimal embedding of complete binary trees into lines and grids. Journal of Parallel and Distributed Computing, 1991, 18(49): 40-56.
Manuela P, Rajasinghb I, Rajanb B, Mercy H. Exact wirelength of hypercubes on a grid. Discrete Applied Mathematics, 2009, 157(7): 1486-1495.
Wei W, Gu H, Wang K, Yu X, Liu X. Improving cloud-based IoT services through virtual network embedding in elastic optical inter-DC networks. IEEE Internet of Things Journal. doi:10.1109/JIOT.2018.2866504.
Chen C, Agrawal D P. dBCube: A new class of hierarchical multiprocessor interconnection networks with area efficient layout. IEEE Trans. Parallel and Distributed Systems, 1993, 4(12): 1332-1344.
Bezrukov S L, Das S K, Elsässer R. An edge-isoperimetric problem for powers of the Petersen graph. Annals of Combinatorics, 2000, 4(2): 153-169.
Yu C, Yang X, He L, Zhang J. Optimal wavelength assignment in the implementation of parallel algorithms with ternary n-cube communication pattern on mesh optical network. Theoretical Computer Science, 2014, 524: 68-77.
Rajan R S, Manuel P, Rajasingh I, Parthiban N, Miller M. A lower bound for dilation of an embedding. The Computer Journal, 2015, 58(12): 3271-3278.
Massie M L, Chun B N, Culler D E. The ganglia distributed monitoring system: Design, implementation, and experience. Parallel Computing, 2004, 30(7): 817-840.