AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion

College of Literature and Journalism, Central South University, Changsha 410083, China
Hunan Province Engineering Technology Research Center of Computer Vision and Intelligent Medical Treatment Changsha 410083, China
School of Computer Science and Engineering, Central South University, Changsha 410083, China

Recommended by CAD/Graphcis 2019

Show Author Information

Abstract

The early detection of diabetic retinopathy is crucial for preventing blindness. However, it is time-consuming to analyze fundus images manually, especially considering the increasing amount of medical images. In this paper, we propose an automatic diabetic retinopathy screening method using color fundus images. Our approach consists of three main components: edge-guided candidate microaneurysms detection, candidates classification using mixed features, and diabetic retinopathy prediction using fused features of image level and lesion level. We divide a screening task into two sub-classification tasks: 1) verifying candidate microaneurysms by a naive Bayes classifier; 2) predicting diabetic retinopathy using a support vector machine classifier. Our approach can effectively alleviate the imbalanced class distribution problem. We evaluate our method on two public databases: Lariboisìere and Messidor, resulting in an area under the curve of 0.908 on Lariboisìere and 0.832 on Messidor. These scores demonstrate the advantages of our approach over the existing methods.

Electronic Supplementary Material

Download File(s)
jcst-34-6-1307-Highlights.pdf (389.2 KB)

References

[1]

Pires R, de Avila S, Jelinek H F, Wainer J, Valle E, Rocha A. Beyond lesion-based diabetic retinopathy: A direct approach for referral. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 193-200.

[2]
Omar Z A, Hanafi M, Mashohor S, Mahfudz N F M, Muna’im M. Automatic diabetic retinopathy detection and classification system. In Proc. the 7th IEEE International Conference on System Engineering and Technology, October 2017, pp.162-166.
[3]

Kar S S, Maity S P. Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Transactions on Biomedical Engineering, 2018, 65(3): 608-618.

[4]

Srivastava R, Duan L, Wong D W, Liu J, Wong T Y. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels. IEEE Computer Methods and Programs in Biomedicine, 2017, 138: 83-91.

[5]

Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois J P. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Transactions on Medical Imaging, 2016, 35(4): 1116-1126.

[6]

Pereira C, Veiga D, Mahdjoub J, Guessoum Z, Gonçalves L, Ferreira M, Monteiro J. Using a multi-agent system approach for microaneurysm detection in fundus images. Artificial Intelligence in Medicine, 2014, 60(3): 179-188.

[7]

Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers and Electrical Engineering, 2018, 72: 274-282.

[8]

Mansour R F. Evolutionary computing enriched computer-aided diagnosis system for diabetic retinopathy: A survey. IEEE Reviews in Biomedical Engineering, 2017, 10: 334-349.

[9]

Morales S, Engan K, Naranjo V, Colomer A. Retinal disease screening through local binary patterns. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 184-192.

[10]
Giancardo L, Karnowski T P, Tobin K W, Meriaudeau F, Chaum E. Validation of microaneurysm-based diabetic retinopathy screening across retina fundus datasets. In Proc. the 26th IEEE International Symposium on Computer-Based Medical Systems, June 2013, pp.125-130.
[11]
Rahim S S, Palade V, Shuttleworth J, Jayne C, Omar R N R. Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In Proc. the 16th IEEE International Conference on Engineering Applications of Neural Networks, September 2015, pp.69-79.
[12]

Dashtbozorg B, Zhang J, Huang F, Romeny B M. Retinal microaneurysms detection using local convergence index features. IEEE Transactions on Image Processing, 2018, 27(7): 3300-3315.

[13]

Niemeijer M, van Ginneken B, Cree M J et al. Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2010, 29(1): 185-195.

[14]

Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A. Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 2018, 158: 185-192.

[15]

Costa P, Galdran A, Smailagic A, Campilho A. A weakly-supervised framework for interpretable diabetic retinopathy detection on retinal images. IEEE Access, 2018, 6: 18747-18758.

[16]

Dai L, Fang R, Li H, Hou X, Sheng B, Wu Q, Jia W. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Transactions on Medical Imaging, 2018, 37(5): 1149-1161.

[17]
Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X. Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. In Proc. the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, September 2017, pp.267-275.
[18]
Lin Z, Guo R, Wang Y, Wu B, Chen T, Wang W, Chen D, Wu J. A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In Proc. the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, September 2018, pp.74-82.
[19]

Frazao L B, Theera-Umpon N, Auephanwiriyakul S. Diagnosis of diabetic retinopathy based on holistic texture and local retinal features. Information Sciences, 2019, 475: 44-66.

[20]

Fleming A D, Philip S, Goatman K A, Williams G J, Olson J A, Sharp P F. Automated detection of exudates for diabetic retinopathy screening. Physics in Medicine and Biology, 2007, 52(24): 7385-7396.

[21]

Yao L, Zeng F, Li D H, Chen Z G. Sparse support vector machine with Lp penalty for feature selection. Journal of Computer Science and Technology, 2017, 32(1): 68-77.

[22]
Carrera E V, González A, Carrera R. Automated detection of diabetic retinopathy using SVM. In Proc. the IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing, August 2017, Article No. 58.
[23]

Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.

[24]
Raman V, Then P, Sumari P. Proposed retinal abnormality detection and classification approach: Computer aided detection for diabetic retinopathy by machine learning approaches. In Proc. the 8th IEEE International Conference on Communication Software and Networks, June 2016, pp.636-641.
[25]

Decenciere E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein, J. Feedback on a publicly distributed image database: The Messidor database. Image Analysis and Stereology, 2014, 33(3): 231-234.

[26]

Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P. Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Transactions on Medical Imaging, 2010, 29(2): 502-512.

[27]

Quellec G, Lamard M, Abràmoff M D, Decencière E, Lay B, Erginay A, Cochener B, Cazuguel G. A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis, 2012, 16(6): 1228-1240.

[28]

Sánchez C I, Niemeijer M, Dumitrescu A V, Suttorp-Schulten M S, Abràmoff M D, Ginneken B V. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Investigative Ophthalmology and Visual Science, 2011, 52(7): 4866-4871.

[29]

Cao P, Ren F, Wan C, Yang J, Zaïane O. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Computerized Medical Imaging and Graphics, 2018, 69: 112-124.

[30]

Zhang X J, Lu Y F, Zhang S H. Multi-task learning for food identification and analysis with deep convolutional neural networks. Journal of Computer Science and Technology, 2016, 31(3): 489-500.

[31]
Deng J, Dong W, Socher R, Li L, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In Proc. the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2009, pp.248-255.
[32]

Abràmoff M, Reinhardt J, Russell S, Folk J, Mahajan V, Niemeijer M, Quellec G. Automated early detection of diabetic retinopathy. Ophthalmology, 2010, 117(6): 1147-1154.

Journal of Computer Science and Technology
Pages 1307-1318
Cite this article:
Zhu C-Z, Hu R, Zou B-J, et al. Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion. Journal of Computer Science and Technology, 2019, 34(6): 1307-1318. https://doi.org/10.1007/s11390-019-1977-x

265

Views

19

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 04 April 2019
Revised: 30 August 2019
Published: 22 November 2019
©2019 Springer Science + Business Media, LLC & Science Press, China
Return