Abstract
Due to the rapid development of the Internet technology such as 5G/6G and artificial intelligence, more and more new network applications appear. Customers using these applications may have different individual demands and such a trend causes great challenges to the traditional integrated service and routing model. In order to satisfy the individual demands of customers, the service customization should be considered, during which the cost of Internet Service Provider (ISP) naturally increases. Hence, how to reach a balance between the customer satisfaction and the ISP profit becomes vitally important. Targeting at addressing this critical problem, this work proposes a service customization oriented reliable routing mechanism, which includes two modules, that is, the service customization module and the routing module. In particular, the former (i.e., the service customization module) is responsible for classifying services by analyzing and processing the customer's demands. After that, the IPv6 protocol is used to implement the service customization, since it naturally supports differentiated services via the extended header fields. The latter is responsible for transforming the customized services into specific routing policies. Specifically, the Nash equilibrium based economic model is firstly introduced to make a perfect balance between the user satisfaction and the ISP profits, which could finally produce a win-win solution. After that, based on the customized service policies, an optimized grey wolf algorithm is designed to establish the routing path, during which the routing reliability is formulated and calculated. Finally, the experiments are carried out and the proposed mechanism is evaluated. The results indicate that the proposed service customization and routing mechanism improves the routing reliability, user satisfaction and ISP satisfaction by about 8.42%, 15.5% and 17.75% respectively compared with the classical open shortest path first algorithm and the function learning based algorithm.