AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

Predicting CircRNA-Disease Associations Based on Improved Weighted Biased Meta-Structure

School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
School of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Department of Computer Science, Georgia State University, Atlanta, GA 30302, U.S.A.
Show Author Information

Abstract

Circular RNAs (circRNAs) are RNAs with a special closed loop structure, which play important roles in tumors and other diseases. Due to the time consumption of biological experiments, computational methods for predicting associations between circRNAs and diseases become a better choice. Taking the limited number of verified circRNA-disease associations into account, we propose a method named CDWBMS, which integrates a small number of verified circRNA-disease associations with a plenty of circRNA information to discover the novel circRNA-disease associations. CDWBMS adopts an improved weighted biased meta-structure search algorithm on a heterogeneous network to predict associations between circRNAs and diseases. In terms of leave-one-out-cross-validation (LOOCV), 10-fold cross-validation and 5-fold cross-validation, CDWBMS yields the area under the receiver operating characteristic curve (AUC) values of 0.921 6, 0.917 2 and 0.900 5, respectively. Furthermore, case studies show that CDWBMS can predict unknow circRNA-disease associations. In conclusion, CDWBMS is an effective method for exploring disease-related circRNAs.

Electronic Supplementary Material

Download File(s)
jcst-36-2-288-Highlights.pdf (162.8 KB)

References

[1]

Kristensen L S, Andersen M S, Stagsted L V W, Ebbesen K K, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(7): 675-691. https://doi.org/10.1038/s41576-019-0158-7.

[2]

Wilusz J E. A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA, 2018, 9(4): Article No. e1478. https://doi.org/10.1002/wrna.1478.

[3]

Sanger H L, Klotz G, Riesner D, Gross H J, Kleinschmidt A K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl. Acad. Sci. USA, 1976, 73(11): 3852-3856. https://doi.org/10.1073/pnas.73.11.3852.

[4]

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993, 73(5): 1019-1030. https://doi.org/10.1016/0092-8674(93)90279-Y.

[5]

Cocquerelle C, Daubersies P, Majérus M A, Kerckaert J P, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J., 1992, 11(3): 1095-1098. https://doi.org/10.1002/j.1460-2075.1992.tb05148.x.

[6]

Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Missplicing yields circular RNA molecules. FASEB J., 1993, 7(1): 155-160. https://doi.org/10.1096/fasebj.7.1.7678559.

[7]

Nigro J M, Cho K R, Fearon E R, Kern S E, Ruppert J M, Oliner J D, Kinzler K W, Vogelstein B. Scrambled exons. Cell, 1991, 64(3): 607-613. https://doi.org/10.1016/0092-8674(91)90244-S.

[8]

Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388. https://doi.org/10.1038/nature11993.

[9]

Memczak S, Jens M, Elefsinioti A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. https://doi.org/10.1038/nature11928.

[10]

Enuka Y, Lauriola M, Feldman M E, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res., 2016, 44(3): 1370-1383. https://doi.org/10.1093/nar/gkv1367.

[11]

Pamudurti N R, Bartok O, Jens M et al. Translation of CircRNAs. Mol. Cell, 2017, 66(1): 9-21. https://doi.org/10.1016/j.molcel.2017.02.021.

[12]

Maass P G, Glažar P, Memczak S et al. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med., 2017, 95(11): 1179-1189. https://doi.org/10.1007/s00109-017-1582-9.

[13]

Aufiero S, Van Den Hoogenhof M M G, Reckman Y J et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA, 2018, 24(6): 815-827. https://doi.org/10.1261/rna.064394.117.

[14]

Rybak-Wolf A, Stottmeister C, Glažar P et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5): 870-885. https://doi.org/10.1016/j.molcel.2015.03.027.

[15]

Li Z, Huang C, Bao C et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3): 256-264. https://doi.org/10.1038/nsmb.2959.

[16]

Lux S, Bullinger L. Circular RNAs in cancer. Adv. Exp. Med. Biol., 2018, 1087: 215-230. https://doi.org/10.1007/978-981-13-1426-1_17.

[17]

Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol. Aspects. Med., 2019, 70: 141-152. https://doi.org/10.1016/j.mam.2019.10.006.

[18]

Smid M, Wilting S M, Uhr K et al. The circular RNome of primary breast cancer. Genome Res., 2019, 29(3): 356-366. https://doi.org/10.1101/gr.238121.118.

[19]

Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, Lin T, Huang J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer, 2018, 17(1): Article No. 161. https://doi.org/10.1186/s12943-018-0908-8.

[20]

Xia Q, Ding T, Zhang G, Li Z, Zeng L, Zhu Y, Guo J, Hou J, Zhu T, Zheng J, Wang J. Circular RNA expression profiling identifies prostate cancer-specific circRNAs in prostate cancer. Cell Physiol. Biochem., 2018, 50(5): 1903-1915. https://doi.org/10.1159/000494870.

[21]

Fan C, Lei X, Fang Z, Jiang Q, Wu F X. CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database (Oxford), 2018, 2018: Article No. bay044. https://doi.org/10.1093/database/bay044.

[22]

Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, Zhao F. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep., 2019, 26(12): 3444-3460. https://doi.org/10.1016/j.celrep.2019.02.078.

[23]
Yao D, Zhang L, Zheng M, Sun X, Lu Y. Circ2Disease: A manually curated database of experimentally validated circRNAs in human disease. 2018, 8(1): Article No. 11018. https://doi.org/10.1038/s41598-018-29360-3.
[24]

Zhao Z, Wang K, Wu F, Wang W, Zhang K, Hu H, Liu Y, Jiang T. circRNA disease: A manually curated database of experimentally supported circRNA-disease associations. Cell Death and Disease, 2018, 9(5): Article No. 475. https://doi.org/10.1038/s41419-018-0503-3.

[25]

Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Front. Genet., 2013, 4: Article No. 283. https://doi.org/10.3389/fgene.2013.00283.

[26]

Lan W, Wang J, Li M, Liu J, Wu F X, Pan Y. Predicting microRNA-disease associations based on improved microRNA and disease similarities. IEEE/ACM Trans. Comput. Biol. Bioinform., 2018, 15(6): 1774-1782. https://doi.org/10.1109/TCBB.2016.2586190.

[27]

Lan W, Li M, Zhao K, Liu J, Wu F X, Pan Y, Wang J. LDAP: A web server for lncRNA-disease association prediction. Bioinformatics, 2017, 33(3): 458-460. https://doi.org/10.1093/bioinformatics/btw639.

[28]

Yan C, Wang J, Ni P, Lan W, Wu F X, Pan Y. DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans. Comput. Biol. Bioinform., 2019, 16(1): 233-243. https://doi.org/10.1109/TCBB.2017.2776101.

[29]

Peng W, Lan W, Yu Z, Wang J, Pan Y. A framework for integrating multiple biological networks to predict microRNA-disease associations. IEEE Trans. Nano Bioscience, 2017, 16(2): 100-107. https://doi.org/10.1109/TNB.2016.2633276.

[30]

Wu L, Li M, Wang J X, Wu F X. Controllability and its applications to biological networks. Journal of Computer Science and Technology, 2019, 34(1): 16-34. https://doi.org/10.1007/s11390-019-1896-x.

[31]

Fang Z, Lei X. Prediction of miRNA-circRNA associations based on k-NN multi-label with random walk restart on a heterogeneous network. Big Data Mining and Analytics, 2019, 2(4): 261-272. https://doi.org/10.26599/BDMA.2019.9020010.

[32]

Fan C, Lei X, Wu F X. Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks. Int. J. Biol. Sci., 2018, 14(14): 1950-1959. https://doi.org/10.7150/ijbs.28260.

[33]

Lei X, Fang Z, Chen L, Wu F X. PWCDA: Path weighted method for predicting circRNA-disease associations. Int. J. Mol. Sci., 2018, 19(11): Article No. 3410. https://doi.org/10.3390/ijms19113410.

[34]

Yan C, Wang J, Wu F X. DWNN-RLS: Regularized least squares method for predicting circRNA-disease associations. BMC Bioinformatics, 2018, 19(Suppl 19): Article No. 520. https://doi.org/10.1186/s12859-018-2522-6.

[35]

Wei H, Liu B. iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization. Brief Bioinform., 2019, 21(4): 1356-1367. https://doi.org/10.1093/bib/bbz057.

[36]

Zhang W, Yu C, Wang X, Liu F. Predicting circRNA-disease associations through linear neighborhood label propagation method. IEEE Access, 2019, 7: 83474-83483. https://doi.org/10.1109/ACCESS.2019.2920942.

[37]

Lei X, Zhang W. BRWSP: Predicting circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network. Complexity, 2019, 2019: Article No. 5938035. https://doi.org/10.1155/2019/5938035.

[38]

Wang Y, Nie C, Zang T, Wang Y. Predicting circRNA-disease associations based on circRNA expression similarity and functional similarity. Frontiers in Genetics, 2019, 10: Article No. 832. https://doi.org/10.3389/fgene.2019.00832.

[39]

Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X, Huang S. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res., 2018, 46(D1): D106-D112. https://doi.org/10.1093/nar/gkx891.

[40]

Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA, 2014, 20(11): 1666-1670. https://doi.org/10.1261/rna.043687.113.

[41]

Muppirala U K, Honavar V G, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics, 2011, 12(1): Article No. 489. https://doi.org/10.1186/1471-2105-12-489.

[42]

Van Laarhoven T, Nabuurs S B, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 2011, 27(21): 3036-3043. https://doi.org/10.1093/bioinformatics/btr500.

[43]

Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 2010, 26(13): 1644-1650. https://doi.org/10.1093/bioinformatics/btq241.

[44]
Huang Z, Zheng Y, Cheng R, Sun Y, Mamoulis N, Li X. Meta structure: Computing relevance in large heterogeneous information networks. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.1595-1604. https://doi.org/10.1145/2939672.2939815.
[45]
Zhao H, Yao Q, Li J, Song Y, Lee D L. Meta-graph based recommendation fusion over heterogeneous information networks. In Proc. the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, pp.635-644. https://doi.org/10.1145/3097983.3098063.
[46]

Long Y, Luo J. WMGHMDA: A novel weighted metagraph-based model for predicting human microbe-disease association on heterogeneous information network. BMC Bioinformatics, 2019, 20(1): Article No. 541. https://doi.org/10.1186/s12859-019-3066-0.

[47]

Lei X, Tie J. Prediction of disease-related metabolites using bi-random walks. PLoS ONE, 2019, 14(11): Article No. e0225380. https://doi.org/10.1371/journal.pone.0225380.

[48]

Jiang Y, Liu B, Yu L, Yan C, Bian H. Predict MiRNA-disease association with collaborative filtering. Neuroinformatics, 2018, 16(3): 363-372. https://doi.org/10.1007/s12021-018-9386-9.

[49]

Necula L, Matei L, Dragu D, Neagu A I, Mambet C, Nedeianu S, Bleotu C, Diaconu C C, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J. Gastroenterol, 2019, 25(17): 2029-2044. https://doi.org/10.3748/wjg.v25.i17.2029.

[50]

Weitz J, Koch M, Debus J, Höhler T, Galle P R, Büchler M W. Colorectal cancer. Lancet, 2005, 365(9454): 153-165. https://doi.org/10.1016/S0140-6736(05)17706-X.

[51]

Sun Y S, Zhao Z, Yang Z N, Xu F, Lu H J, Zhu Z Y, Shi W, Jiang J, Yao P P, Zhu H P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11): 1387-1397. https://doi.org/10.7150/ijbs.21635.

Journal of Computer Science and Technology
Pages 288-298
Cite this article:
Lei X-J, Bian C, Pan Y. Predicting CircRNA-Disease Associations Based on Improved Weighted Biased Meta-Structure. Journal of Computer Science and Technology, 2021, 36(2): 288-298. https://doi.org/10.1007/s11390-021-0798-x

426

Views

11

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 13 July 2020
Accepted: 23 February 2021
Published: 05 March 2021
©Institute of Computing Technology, Chinese Academy of Sciences 2021
Return