AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

Quasi-Developable B-Spline Surface Design with Control Rulings

School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China
Shandong Co-Innovation Center of Future Intelligent Computing, Yantai 264005, China
Shandong Province Key Laboratory of Digital Media Technology, Shandong University of Finance and Economics Jinan 250061, China
Show Author Information

Abstract

We propose a method for generating a ruled B-spline surface fitting to a sequence of pre-defined ruling lines and the generated surface is required to be as developable as possible. Specifically, the terminal ruling lines are treated as hard constraints. Different from existing methods that compute a quasi-developable surface from two boundary curves and cannot achieve explicit ruling control, our method controls ruling lines in an intuitive way and serves as an effective tool for computing quasi-developable surfaces from freely-designed rulings. We treat this problem from the point of view of numerical optimization and solve for surfaces meeting the distance error tolerance allowed in applications. The performance and the efficacy of the proposed method are demonstrated by the experiments on a variety of models including an application of the method for the path planning in 5-axis computer numerical control (CNC) flank milling.

Electronic Supplementary Material

Download File(s)
jcst-37-5-1221-Highlights.pdf (113.2 KB)

References

[1]

Pottmann H, Schiftner A, Bo P B et al. Freeform surfaces from single curved panels. ACM Trans. Graph, 2008, 27(3): Article No. 76. DOI: 10.1145/1360612.1360675.

[2]

Chalfant J S, Maekawa T. Design for manufacturing using B-spline developable surfaces. Journal of Ship Research, 1998, 42(03): 207-215. DOI: 10.5957/jsr.1998.42.3.207.

[3]

Pérez F, Suárez J A. Quasi-developable B-spline surfaces in ship hull design. Computer-Aided Design, 2007, 39(10): 853-862. DOI: 10.1016/j.cad.2007.04.004.

[4]

Chu C H, Chen J T. Tool path planning for five-axis flank milling with developable surface approximation. The International Journal of Advanced Manufacturing Technology, 2006, 29(7/8): 707-713. DOI: 10.1007/s00170-005-2564-6.

[5]

Calleja A, Bo P B, González H, Bartoň M, de Lacalle L N L. Highly accurate 5-axis flank CNC machining with conical tools. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 1605-1615. DOI: 10.1007/s00170-018-2033-7.

[6]

Tang C C, Bo P B, Wallner J, Pottmann H. Interactive design of developable surfaces. ACM Trans. Graph, 2016, 35(2): Article No. 12. DOI: 10.1145/2832906.

[7]

Chen M, Tang K, Joneja A. Design of developable interpolating strips. Computer-Aided Design and Applications, 2011, 8(4): 557-570. DOI: 10.3722/CADAPS.2011.557-570.

[8]

Li C, Zhu C. Designing developable C-Bézier surface with shape parameters. Mathematics, 2020, 8(3): Article No. 402. DOI: 10.3390/math8030402.

[9]

Cantón A, Fernández-Jambrina L. Interpolation of a spline developable surface between a curve and two rulings. Frontiers of Information Technology & Electronic Engineering, 2015, 16(3): 173-190. DOI: 10.1631/FITEE.14a0210.

[10]

Bo P B, Zheng Y J, Jia X H, Zhang C C. Multi-strip smooth developable surfaces from sparse design curves. Computer-Aided Design, 2019, 114: 1-12. DOI: 10.1016/j.cad.2019.05.001.

[11]

Bodduluri R M C, Ravani B. Design of developable surfaces using duality between plane and point geometries. Computer-Aided Design, 1993, 25(10): 621-632. DOI: 10.1016/0010-4485(93)90017-I.

[12]

English E, Bridson R. Animating developable surfaces using nonconforming elements. ACM Trans. Graph, 2008, 27(3): Article No. 66. DOI: 10.1145/1360612.1360665.

[13]

Solomon J, Vouga E, Wardetzky M, Grinspun E. Flexible developable surfaces. Computer Graphics Forum, 2012, 31(5): 1567-1576. DOI: 10.1111/j.1467-8659.2012.03162.x.

[14]

Liu Y, Pottmann H, Wallner J, Yang Y L, Wang W. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph, 2006, 25(3): 681-689. DOI: 10.1145/1141911.1141941.

[15]

Liu Y J, Tang K, Gong W Y, Wu T R. Industrial design using interpolatory discrete developable surfaces. Computer-Aided Design, 2011, 43(9): 1089-1098. DOI: 10.1016/j.cad.2011.06.001.

[16]

Oetter R, Barry C D, Duffty B, Welter J. Block construction of small ships and boats through use of developable panels. Journal of Ship Production, 2002, 18(02): 65-72. DOI: 10.5957/jsp.2002.18.2.65.

[17]
Subag J, Elber G. Piecewise developable surface approximation of general NURBS surfaces with global error bounds. In Proc. the 4th International Conference on Geometric Modeling and Processing, July 2006, pp. 143-156. DOI: 10.1007/11802914_11.
[18]

Gavriil K, Schiftner A, Pottmann H. Optimizing B-spline surfaces for developability and paneling architectural freeform surfaces. Computer-Aided Design, 2019, 111: 29-43. DOI: 10.1016/j.cad.2019.01.006.

[19]

Tang K, Wang C L. Modeling developable folds on a strip. Journal of Computing and Information Science in Engineering, 2005, 5(1): 35-47. DOI: 10.1115/1.1804206.

[20]

Wang C L, Tang K. Optimal boundary triangulations of an interpolating ruled surface. Journal of Computing and Information Science in Engineering, 2005, 5(4): 291-301. DOI: 10.1115/1.2052850.

[21]

Tang K, Chen M. Quasi-developable mesh surface interpolation via mesh deformation. IEEE Trans. Visual Comput. Graphics, 2009, 15(3): 518-528. DOI: 10.1109/TVCG.2008.192.

[22]

Pottmann H, Farin G. Developable rational Bézier and B-spline surfaces. Computer Aided Geometric Design, 1995, 12(5): 513-531. DOI: 10.1016/0167-8396(94)00031-M.

[23]

Chen H Y, Lee I K, Leopoldseder S, Pottmann H, Randrup T, Wallner J. On surface approximation using developable surfaces. Graphical Models and Image Processing, 1999, 61(2): 110-124. DOI: 10.1006/gmip.1999.0487.

[24]

Aumann G. A simple algorithm for designing developable Bézier surfaces. Computer Aided Geometric Design, 2003, 20(8/9): 601-619. DOI: 10.1016/j.cagd.2003.07.001.

[25]

Aumann G. Degree elevation and developable Bézier surfaces. Computer Aided Geometric Design, 2004, 21(7): 661-670. DOI: 10.1016/j.cagd.2004.04.007.

[26]

Hu G, Wu J. Generalized quartic H-Bézier curves: Construction and application to developable surfaces. Advances in Engineering Software, 2019, 138: Article No. 102723. DOI: 10.1016/j.advengsoft.2019.102723.

[27]

Chu C H. Geometric design of uniform developable B-spline surfaces: Constraints and degrees of freedom. Journal of Industrial and Production Engineering, 2013, 30(5): 291-295. DOI: 10.1080/21681015.2013.828788.

[28]

Chen M, Tang K. Quasi-developable surface modeling of contours with curved triangular patches. Computers & Graphics, 2013, 37(7): 851-861. DOI: 10.1016/j.cag.2013.05.002.

[29]

Chen M, Tang K. G2 quasi-developable Bezier surface interpolation of two space curves. Computer-Aided Design, 2013, 45(11): 1365-1377. DOI: 10.1016/j.cad.2013.06.009.

[30]

Bo P B, Zheng Y J, Chu D H, Zhang C C. As-developable-as-possible B-spline surface interpolation to B-spline curves. Computer Aided Geometric Design, 2020, 79: Article No. 101863. DOI: 10.1016/j.cagd.2020.101863.

[31]

Park F C, Yu J, Chun C, Ravani B. Design of developable surfaces using optimal control. Journal of Mechanical Design, 2002, 124(4): 602-608. DOI: 10.1115/1.1515795.

[32]

Fernández-Jambrina L. B-spline control nets for developable surfaces. Computer Aided Geometric Design, 2007, 24(4): 189-199. DOI: 10.1016/j.cagd.2007.03.001.

[33]

Zheng W N, Bo P B, Liu Y, Wang W W. Fast B-spline curve fitting by L-BFGS. Computer Aided Geometric Design, 2012, 29(7): 448-462. DOI: 10.1016/j.cagd.2012.03.004.

[34]
Hoschek J, Lasser D. Fundamentals of Computer Aided Geometric Design. Peters, 1993.
[35]

Lim C G. A universal parametrization in B-spline curve and surface interpolation. Computer Aided Geometric Design, 1999, 16(5): 407-422. DOI: 10.1016/S0167-8396(99)00010-2.

Journal of Computer Science and Technology
Pages 1221-1238
Cite this article:
Hu Z-X, Bo P-B, Zhang C-M. Quasi-Developable B-Spline Surface Design with Control Rulings. Journal of Computer Science and Technology, 2022, 37(5): 1221-1238. https://doi.org/10.1007/s11390-022-0680-5

370

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 June 2020
Accepted: 10 February 2022
Published: 30 September 2022
©Institute of Computing Technology, Chinese Academy of Sciences 2022
Return