AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

Real-Time Underwater Image Enhancement Using Adaptive Full-Scale Retinex

School of Information, Yunnan University of Finance and Economics, Kunming 650221, China
School of Electrical Electronics and Computer Science, Guangxi University of Science and Technology Liuzhou 545006, China
Department of Information and Communication, College of the Chinese People's Armed Police Force Chengdu 610213, China
Show Author Information

Abstract

Current Retinex-based image enhancement methods with fixed scale filters cannot adapt to situations involving various depths of field and illuminations. In this paper, a simple but effective method based on adaptive full-scale Retinex (AFSR) is proposed to clarify underwater images or videos. First, we design an adaptive full-scale filter that is guided by the optical transmission rate to estimate illumination components. Then, to reduce the computational complexity, we develop a quantitative mapping method instead of non-linear log functions for directly calculating the reflection component. The proposed method is capable of real-time processing of underwater videos using temporal coherence and Fourier transformations. Compared with eight state-of-the-art clarification methods, our method yields comparable or better results for image contrast enhancement, color-cast correction and clarity.

Electronic Supplementary Material

Download File(s)
JCST-2010-11115-Highlights.pdf (175 KB)

References

[1]

Jaffe J S. Underwater optical imaging: The past, the present, and the prospects. IEEE Journal of Oceanic Engineering, 2015, 40(3): 683–700. DOI: 10.1109/JOE.2014.2350751.

[2]
Hou W L, Gray D J, Weidemann A D, Fournier G R, Forand J L. Automated underwater image restoration and retrieval of related optical properties. In Proc. the 2017 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2007, pp.1889–1892. DOI: 10.1109/IGARSS.2007.4423193.
[3]

Wells W H. Loss of resolution in water as a result of multiple small-angle scattering. Journal of the Optical Society of America, 1969, 59(6): 686–691. DOI: 10.1364/JOSA.59.000686.

[4]

Xiang W D, Yang P, Wang S, Xu B, Liu H. Underwater image enhancement based on red channel weighted compensation and gamma correction model. Opto-Electronic Advances, 2018, 1(10): 9. DOI: 10.29026/oea.2018.1800 24.

[5]

Galdran A, Pardo D, Picón A, Alvarez-Gila A. Automatic red-channel underwater image restoration. Journal of Visual Communication and Image Representation, 2015, 26: 132–145. DOI: 10.1016/j.jvcir.2014.11.006.

[6]

Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Processing, 2012, 21(4): 1756–1769. DOI: 10.1109/ tip.2011.2179666.

[7]

He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Trans. Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. DOI: 10.1109/TPAMI.2010.168.

[8]

Zhang M H, Peng J H. Underwater image restoration based on a new underwater image formation model. IEEE Access, 2018, 6: 58634–58644. DOI: 10.1109/ACCESS.2018.2875344.

[9]
Rahman Z, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement. In Proc. the 3rd IEEE International Conference on Image Processing, Sept. 1996, pp.1003–1006. DOI: 10.1109/ICIP.1996.560995.
[10]

Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Processing, 1997, 6(7): 965–976. DOI: 10.1109/83.597272.

[11]

Rahman Z U, Jobson D J, Woodell G A. Retinex processing for automatic image enhancement. Journal of Electronic Imaging, 2004, 13(1): 100–110. DOI: 10.1117/1.1636 183.

[12]

Hsu E, Mertens T, Paris S, Avidan S, Durand F. Light mixture estimation for spatially varying white balance. ACM Trans. Graphics, 2008, 27(3): 1–7. DOI: 10.1145/ 1360612.1360669.

[13]
Finlayson G, Trezzi E. Shades of gray and colour constancy. In Proc. the 12th Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, Nov. 2004, pp.37–41. DOI: 10.2352/CIC.2004.12.1.art00008.
[14]
Fu X Y, Sun Y, Liwang M H, Huang Y, Zhang X P, Ding X H. A novel retinex based approach for image enhancement with illumination adjustment. In Proc. the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2014, pp.1190–1194. DOI: 10.1109/ICASSP.2014.6853785.
[15]
Ancuti C, Ancuti C O, Haber T, Bekaert P. Enhancing underwater images and videos by fusion. In Proc. the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp.81–88. DOI: 10.1109/CVPR.2012.6247661.
[16]
Zosso D, Tran G, Osher S. A unifying retinex model based on non-local differential operators. In Proc. the 2013 SPIE 8657, Computational Imaging XI, Feb. 2013, Article No. 865702. DOI: 10.1117/12.2008839.
[17]

Han M, Lyu Z, Qiu T, Xu M L. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Systems, Man, and Cybernetics: Systems, 2020, 50(5): 1820–1832. DOI: 10.1109/TSMC.2017.2788902.

[18]

Li J, Skinner K A, Eustice R M, Johnson-Roberson M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, 2018, 3(1): 387–394. DOI: 10.1109/LRA.2017.2730363.

[19]

Berman D, Levy D, Avidan S, Treibitz T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Analysis and Machine Intelligence, 2021, 43(8): 2822–2837. DOI: 10.1109/TPAMI.2020.2977624.

[20]

Li Y J, Lu H M, Zhang L F, Li J R, Serikawa S. Real-time visualization system for deep-sea surveying. Mathematical Problems in Engineering, 2014, 2014: 437071. DOI: 10.1155/2014/437071.

[21]

Sun X, Liu L P, Li Q, Dong J Y, Lima E, Yin R Y. Deep pixel-to-pixel network for underwater image enhancement and restoration. IET Image Processing, 2019, 13(3): 469–474. DOI: 10.1049/iet-ipr.2018.5237.

[22]
Fu X Y, Zhuang P X, Huang Y, Liao Y H, Zhang X P, Ding X H. A retinex-based enhancing approach for single underwater image. In Proc. the 2014 IEEE International Conference on Image Processing, Oct. 2014, pp.4572–4576. DOI: 10.1109/ICIP.2014.7025927.
[23]
Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image. In Proc. the 12th IEEE International Conference on Computer Vision, Sept. 29–Oct. 2, 2009, pp.2201–2208. DOI: 10.1109/ICCV.2009.5459251.
[24]

Kaplan S, Zhu Y M. Full-dose pet image estimation from low-dose pet image using deep learning: A pilot study. Journal of Digital Imaging, 2019, 32(5): 773–778. DOI: 10.1007/s10278-018-0150-3.

[25]

Liu Y F, Jaw D W, Huang S C, Hwang J N. DesnowNet: Context-aware deep network for snow removal. IEEE Trans. Image Processing, 2018, 27(6) 3064–3073. DOI: 10.1109/TIP.2018.2806202.

[26]

Zhou Y, Wu Q, Yan K M, Feng L Y, Xiang W. Underwater image restoration using color-line model. IEEE Trans. Circuits and Systems for Video Technology, 2019, 29(3): 907–911. DOI: 10.1109/TCSVT.2018.2884615.

[27]
Zhang J Y, Chen Y, Huang X X. Edge detection of images based on improved Sobel operator and genetic algorithms. In Proc. the 2009 International Conference on Image Analysis and Signal Processing, Apr. 2009, pp.31–35. DOI: 10.1109/IASP.2009.5054605.
[28]

Shahid M, Rossholm A, Lövström B, Zepernick H J. No-reference image and video quality assessment: A classification and review of recent approaches. EURASIP Journal on Image and Video Processing, 2014, 40(2014): Article No. 40. DOI: 10.1186/1687-5281-2014-40.

[29]
Rahman Z U, Jobson D J, Woodell G A, Hines G D. Image enhancement, image quality, and noise. In Proc. the 2005 SPIE 5907, Photonic Devices and Algorithms for Computing VII, Sept. 2005, Article No. 59070N. DOI: 10.1117/12.619460.
Journal of Computer Science and Technology
Pages 885-898
Cite this article:
Xu X-G, Fan X-S, Liu Y-L. Real-Time Underwater Image Enhancement Using Adaptive Full-Scale Retinex. Journal of Computer Science and Technology, 2023, 38(4): 885-898. https://doi.org/10.1007/s11390-022-1115-z

253

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 April 2021
Accepted: 22 February 2022
Published: 06 December 2023
© Institute of Computing Technology, Chinese Academy of Sciences 2023
Return