AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper

CAGCN: Centrality-Aware Graph Convolution Network for Anomaly Detection in Industrial Control Systems

National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Abstract

In industrial control systems, the utilization of deep learning based methods achieves improvements for anomaly detection. However, most current methods ignore the association of inner components in industrial control systems. In industrial control systems, an anomaly component may affect the neighboring components; therefore, the connective relationship can help us to detect anomalies effectively. In this paper, we propose a centrality-aware graph convolution network (CAGCN) for anomaly detection in industrial control systems. Unlike the traditional graph convolution network (GCN) model, we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control systems. Our experiments show that compared with GCN, our CAGCN has a better ability to utilize this relationship between components in industrial control systems. The performances of the model are evaluated on the Secure Water Treatment (SWaT) dataset and the Water Distribution (WADI) dataset, the two most common industrial control systems datasets in the field of industrial anomaly detection. The experimental results show that our CAGCN achieves better results on precision, recall, and F1 score than the state-of-the-art methods.

Electronic Supplementary Material

Download File(s)
JCST-2201-12149-Highlights.pdf (161.7 KB)

References

[1]
Stouffer K, Falco J, Scarfone K. Guide to industrial control systems (ICS) security. National Institute of Standards and Technology, 2011. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82.pdf, July 2024.
[2]
Drias Z, Serhrouchni A, Vogel O. Analysis of cyber security for industrial control systems. In Proc. the 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications, Aug. 2015. DOI: 10.1109/SSIC.2015.7245330.
[3]

Galloway B, Hancke G P. Introduction to industrial control networks. IEEE Communications Surveys & Tutorials, 2013, 15(2): 860–880. DOI: 10.1109/SURV.2012.071812. 00124.

[4]
Ogie R I. Cyber security incidents on critical infrastructure and industrial networks. In Proc. the 9th International Conference on Computer and Automation Engineering, Feb. 2017, pp.254–258. DOI: 10.1145/3057039.3057076.
[5]

Zhou S X, Han J H, Li C, Wu D C. Research on trusted measurement of industrial control network with Markov reward model. Telecommunications Science, 2015, 31(2): 113–117, 139. DOI: 10.11959/j.issn.1000-0801.2015013.

[6]

Wei Q Z. Industrial network control system security and management. Measurement & Control Technology, 2013, 32(2): 87–92. DOI: 10.19708/j.ckjs.2013.02.023.

[7]

Kim S, Heo G, Zio E, Shin J, Song J G. Cyber attack taxonomy for digital environment in nuclear power plants. Nuclear Engineering and Technology, 2020, 52(5): 995–1001. DOI: 10.1016/j.net.2019.11.001.

[8]

Lu G M. The analysis of present situation and future threats for the industrial control security in China. Cyberspace Security, 2018, 9(3): 1–7. DOI: 10.3969/j.issn.1674- 9456.2018.03.001.

[9]

Munro K. Deconstructing flame: The limitations of traditional defences. Computer Fraud & Security, 2012, 2012(10): 8–11. DOI: 10.1016/S1361-3723(12)70102-1.

[10]

Zhang X M, Wang L H, He Y Y, He S P. Analysis of potential vulnerabilities and security testing in industrial control system. Chinese Journal on Internet of Things, 2017, 1(1): 34–39. DOI: 10.11959/j.issn.2096-3750.2017.00005.

[11]

Kshetri N, Voas J. Hacking power grids: A current problem. Computer, 2017, 50(12): 91–95. DOI: 10.1109/MC.2017.4451203.

[12]

Das T K, Adepu S, Zhou J Y. Anomaly detection in industrial control systems using logical analysis of data. Computers & Security, 2020, 96: 101935. DOI: 10.1016/j.cose.2020.101935.

[13]

Liu L W, Hu M D, Kang C Q, Li X Y. Unsupervised anomaly detection for network data streams in industrial control systems. Information, 2020, 11(2): 105. DOI: 10.3390/info11020105.

[14]

Hao Y R, Sheng Y Q, Wang J L, Li C P. Network security event prediction based on recurrent neural network. Journal of Network New Media, 2017, 6(5): 54–58. DOI: 10.3969/j.issn.2095-347X.2017.05.010. (in Chinese)

[15]

Perales Gómez Á L, Fernández Maimó L, Celdrán A H, García Clemente F J. MADICS: A methodology for anomaly detection in industrial control systems. Symmetry, 2020, 12(10): 1583. DOI: 10.3390/sym12101583.

[16]

Mantere M, Sailio M, Noponen S. Network traffic features for anomaly detection in specific industrial control system network. Future Internet, 2013, 5(4): 460–473. DOI: 10.3390/fi5040460.

[17]
Feng C, Li T T, Chana D. Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks. In Proc. the 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Jun. 2017, pp.261–272. DOI: 10.1109/DSN.2017.34.
[18]
Kiss I, Genge B, Haller P, Sebestyén G. Data clustering-based anomaly detection in industrial control systems. In Proc. the 10th IEEE International Conference on Intelligent Computer Communication and Processing, Sept. 2014, pp.275–281. DOI: 10.1109/ICCP.2014.6937009.
[19]
Inoue J, Yamagata Y, Chen Y Q, Poskitt C M, Sun J. Anomaly detection for a water treatment system using unsupervised machine learning. In Proc. the IEEE International Conference on Data Mining Workshops, Nov. 2017, pp.1058–1065. DOI: 10.1109/ICDMW.2017.149.
[20]
Kim J, Yun J H, Kim H C. Anomaly detection for industrial control systems using sequence-to-sequence neural networks. In Proc. the 2019 International Workshops, Sept. 2019, pp.3–18. DOI: 10.1007/978-3-030-42048-2_1.
[21]

Wang T Y, Zeng P, Zhao J M, Liu X D, Zhang B W. Identification of influential nodes in industrial networks based on structure analysis. Symmetry, 2022, 14(2): 211. DOI: 10.3390/sym14020211.

[22]

Ur-Rehman A, Gondal I, Kamruzzaman J, Jolfaei A. Vulnerability modelling for hybrid industrial control system networks. Journal of Grid Computing, 2020, 18(4): 863–878. DOI: 10.1007/s10723-020-09528-w.

[23]
Lin Q, Adepu S, Verwer S, Mathur A. TABOR: A graphical model-based approach for anomaly detection in industrial control systems. In Proc. the 2018 on Asia Conference on Computer and Communications Security, May 2018, pp.525–536. DOI: 10.1145/3196494.3196546.
[24]
Li D, Chen D C, Jin B H, Shi L, Goh J, Ng S K. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In Proc. the 28th Int. Con. Artificial Neural Networks, Sept. 2019, pp.703–716. DOI: 10.1007/978-3-030-30490-4_56.
[25]

Zhang Q, Zhou C J, Tian Y C, Xiong N X, Qin Y Q, Hu B W. A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Industrial Informatics, 2018, 14(6): 2497–2506. DOI: 10.1109/TII.2017.2768998.

[26]
Yoon M K, Ciocarlie G F. Communication pattern monitoring: Improving the utility of anomaly detection for industrial control systems. In Proc. the 2014 NDSS Workshop on Security of Emerging Networking Technologies, Feb. 2014. DOI: 10.14722/sent.2014.23012.
[27]

Kravchik M, Shabtai A. Efficient cyber attack detection in industrial control systems using lightweight neural networks and PCA. IEEE Trans. Dependable and Secure Computing, 2022, 19(4): 2179–2197. DOI: 10.1109/TDSC.2021.3050101.

[28]

Elnour M, Meskin N, Khan K, Jain R. A dual-isolation-forests-based attack detection framework for industrial control systems. IEEE Access, 2020, 8: 36639–36651. DOI: 10.1109/ACCESS.2020.2975066.

[29]

Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Processing, 2017, 26(10): 4843–4855. DOI: 10.1109/TIP.2017.2725580.

[30]
Zheng H L, Fu J L, Mei T, Luo J B. Learning multi-attention convolutional neural network for fine-grained image recognition. In Proc. the 2017 IEEE International Conference on Computer Vision, Oct. 2017, pp.5219–5227. DOI: 10.1109/ICCV.2017.557.
[31]

Xie X Z, Niu J W, Liu X F, Li Q F, Wang Y, Han J, Tang S J. DG-CNN: Introducing margin information into convolutional neural networks for breast cancer diagnosis in ultrasound images. Journal of Computer Science and Technology, 2022, 37(2): 277–294. DOI: 10.1007/s11390-020-0192-0.

[32]
Yin Y F, Shah R R, Zimmermann R. Learning and fusing multimodal deep features for acoustic scene categorization. In Proc. the 26th ACM International Conference on Multimedia, Oct. 2018, pp.1892–1900. DOI: 10.1145/3240508.3240631.
[33]

Abdoli S, Cardinal P, Lameiras Koerich A. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Systems with Applications, 2019, 136: 252–263. DOI: 10.1016/j.eswa.2019.06.040.

[34]
Kravchik M, Shabtai A. Detecting cyber attacks in industrial control systems using convolutional neural networks. In Proc. the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, Jan. 2018, pp.72–83. DOI: 10.1145/3264888.3264896.
[35]
Liu J J, Yin L B, Hu Y, Lv S C, Sun L M. A novel intrusion detection algorithm for industrial control systems based on CNN and process state transition. In Proc. the 37th IEEE International Performance Computing and Communications Conference, Nov. 2018. DOI: 10.1109/PCCC.2018.8710993.
[36]
Hu Y B, Zhang D H, Cao G Y, Pan Q. Network data analysis and anomaly detection using CNN technique for industrial control systems security. In Proc. the 2019 IEEE International Conference on Systems, Man and Cybernetics, Oct. 2019, pp.593–597. DOI: 10.1109/SMC.2019.8913895.
[37]

Abdelaty M, Doriguzzi-Corin R, Siracusa D. DAICS: A deep learning solution for anomaly detection in industrial control systems. IEEE Trans. Emerging Topics in Computing, 2022, 10(2): 1117–1129. DOI: 10.1109/TETC.2021. 3073017.

[38]

Kusakina N M, Orlov S P, Kravets O J. Convolutional neural network for detecting anomalies in the control system of a machine-building enterprise. IOP Conference Series: Materials Science and Engineering, 2020, 862: 052020. DOI: 10.1088/1757-899X/862/5/052020.

[39]

Salama M, El-Dakhakhni W, Tait M. Mixed strategy for power grid resilience enhancement under cyberattack. Sustainable and Resilient Infrastructure, 2022, 7(5): 568–588. DOI: 10.1080/23789689.2021.1974675.

[40]

Milanović J V, Zhu W T. Modeling of interconnected critical infrastructure systems using complex network theory. IEEE Trans. Smart Grid, 2018, 9(5): 4637–4648. DOI: 10.1109/TSG.2017.2665646.

[41]
Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. In Proc. the 2nd International Conference on Learning Representations, Apr. 2014.
[42]

Zhang Z W, Cui P, Zhu W W. Deep learning on graphs: A survey. IEEE Trans. Knowledge and Data Engineering, 2022, 34(1): 249–270. DOI: 10.1109/TKDE.2020.2981333.

[43]
Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. In Proc. the 2005 IEEE International Joint Conference on Neural Networks, Jul. 31-Aug. 4 2005, pp.729–734. DOI: 10.1109/IJCNN.2005.1555942.
[44]

Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans. Neural Networks, 2009, 20(1): 61–80. DOI: 10.1109/TNN.2008.2005605.

[45]
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In Proc. the 5th International Conference on Learning Representations, Apr. 2017.
[46]
Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. the 30th Conference on Neural Information Processing Systems, Dec. 2016, pp.3844–3852.
[47]
Liang X D, Shen X H, Feng J S, Lin L, Yan S C. Semantic object parsing with graph LSTM. In Proc. the 14th European Conference on Computer Vision, Oct. 2016, pp.125–143. DOI: 10.1007/978-3-319-46448-0_8.
[48]
Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In Proc. the 6th Int. Conf. Learning Representations, May 2018.
[49]

Zhao L, Song Y J, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H F. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intelligent Transportation Systems, 2020, 21(9): 3848–3858. DOI: 10.1109/TITS.2019.2935152.

[50]
Yan S J, Xiong Y J, Lin D H. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proc. the 32nd AAAI Conference on Artificial Intelligence, Feb. 2018. pp.7444–7452.
[51]
Stergiopoulos G, Theocharidou M, Kotzanikolaou P, Gritzalis D. Using centrality measures in dependency risk graphs for efficient risk mitigation. In Proc. the 9th IFIP 11. 10 International Conference on Critical Infrastructure Protection, Mar. 2015, pp.299–314. DOI: 10.1007/978-3-319-26567-4_18.
[52]

Ricaud B, Borgnat P, Tremblay N, Gonçalves P, Vandergheynst P. Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs. Comptes Rendus Physique, 2019, 20(5): 474–488. DOI: 10.1016/j.crhy.2019.08.003.

[53]

Hammond D K, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 2011, 30(2): 129–150. DOI: 10.1016/j.acha.2010.04.005.

[54]
Saxena A, Iyengar S. Centrality measures in complex networks: A survey. arXiv: 2011.07190, 2020. https://arxiv.org/abs/2011.07190, Jul. 2024.
[55]

Das K, Samanta S, Pal M. Study on centrality measures in social networks: A survey. Social Network Analysis and Mining, 2018, 8(1): 13. DOI: 10.1007/s13278-018-0493-2.

[56]

Landherr A, Friedl B, Heidemann J. A critical review of centrality measures in social networks. Business & Information Systems Engineering, 2010, 2(6): 371–385. DOI: 10.1007/s12599-010-0127-3.

[57]

Tuğal İ, Karcı A. Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks. Physica A: Statistical Mechanics and its Applications, 2019, 523: 352–363. DOI: 10.1016/j.physa.2019.02.026.

[58]

Morelli S A, Ong D C, Makati R, Jackson M O, Zaki J. Empathy and well-being correlate with centrality in different social networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9843–9847. DOI: 10.1073/pnas.1702155114.

[59]

Leydesdorff L, Wagner C S, Bornmann L. Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. Scientometrics, 2018, 114(2): 567–592. DOI: 10.1007/s11192-017-2528-2.

[60]

Ding Y, Yan E J, Frazho A, Caverlee J. PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2229–2243. DOI: 10.1002/asi.v60:11.

[61]

Ji P S, Jin J S. Coauthorship and citation networks for statisticians. The Annals of Applied Statistics, 2016, 10(4): 1779–1812. DOI: 10.1214/15-AOAS896.

[62]

Samad A, Arshad Islam M, Azhar Iqbal M, Aleem M. Centrality-based paper citation recommender system. EAI Endorsed Trans. Industrial Networks and Intelligent Systems, 2019, 6(19): e2. DOI: 10.4108/eai.13-6-2019.159121.

[63]

Cickovski T, Peake E, Aguiar-Pulido V, Narasimhan G. ATria: A novel centrality algorithm applied to biological networks. BMC Bioinformatics, 2017, 18(Suppl 8): 239. DOI: 10.1186/s12859-017-1659-z.

[64]

Koschützki D, Schreiber F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulation and Systems Biology, 2008, 2: 193–201. DOI: 10.4137/grsb.s702.

[65]

Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 2018, 12(1): 80. DOI: 10.1186/s12918-018-0598-2.

[66]

Jayasinghe A, Sano K, Rattanaporn K. Application for developing countries: Estimating trip attraction in urban zones based on centrality. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(5): 464–476. DOI: 10.1016/j.jtte.2017.05.011.

[67]

Gao S, Wang Y L, Gao Y, Liu Y. Understanding urban traffic-flow characteristics: A rethinking of betweenness centrality. Environment and Planning B: Urban Analytics and City Science, 2013, 40(1): 135–153. DOI: 10.1068/b38141.

[68]
Parmar A, Gnanadhas J, Mini T T, Abhilash G, Biswal A C. Multi-agent approach for anomaly detection in automation networks. In Proc. the 2014 International Conference on Circuits, Communication, Control and Computing, Nov. 2014, pp.225–230. DOI: 10.1109/CIMCA.2014.7057795.
[69]

Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 2010, 32(3): 245–251. DOI: 10.1016/j.socnet.2010.03.006.

[70]

Bavelas A. Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America, 1950, 22(6): 725–730. DOI: 10.1121/1.1906679.

[71]

Freeman L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40(1): 35–41. DOI: 10.2307/ 3033543.

[72]

Brandes U. A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 2001, 25(2): 163–177. DOI: 10.1080/0022250X.2001.9990249.

[73]

Hage P, Harary F. Eccentricity and centrality in networks. Social Networks, 1995, 17(1): 57–63. DOI: 10.1016/0378-8733(94)00248-9.

[74]

Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 2012, 391(4): 1777–1787. DOI: 10.1016/j.physa.2011.09.017.

[75]

Bonacich P. Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 1972, 2(1): 113–120. DOI: 10.1080/0022250X.1972.9989806.

[76]

Stephenson K, Zelen M. Rethinking centrality: Methods and examples. Social Networks, 1989, 11(1): 1–37. DOI: 10.1016/0378-8733(89)90016-6.

[77]
Goh J, Adepu S, Junejo K N, Mathur A. A dataset to support research in the design of secure water treatment systems. In Proc. the 11th International Conference on Critical Information Infrastructures Security, Oct. 2016, pp.88–99. DOI: 10.1007/978-3-319-71368-7_8.
[78]
Ahmed C M, Palleti V R, Mathur A P. WADI: A water distribution testbed for research in the design of secure cyber physical systems. In Proc. the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, Apr. 2017, pp.25–28. DOI: 10.1145/3055366.3055375.
Journal of Computer Science and Technology
Pages 967-983
Cite this article:
Yang J, Sheng Y-Q, Wang J-L, et al. CAGCN: Centrality-Aware Graph Convolution Network for Anomaly Detection in Industrial Control Systems. Journal of Computer Science and Technology, 2024, 39(4): 967-983. https://doi.org/10.1007/s11390-022-2149-y

58

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 07 January 2022
Accepted: 08 September 2022
Published: 20 September 2024
© Institute of Computing Technology, Chinese Academy of Sciences 2024
Return