Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In industrial control systems, the utilization of deep learning based methods achieves improvements for anomaly detection. However, most current methods ignore the association of inner components in industrial control systems. In industrial control systems, an anomaly component may affect the neighboring components; therefore, the connective relationship can help us to detect anomalies effectively. In this paper, we propose a centrality-aware graph convolution network (CAGCN) for anomaly detection in industrial control systems. Unlike the traditional graph convolution network (GCN) model, we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control systems. Our experiments show that compared with GCN, our CAGCN has a better ability to utilize this relationship between components in industrial control systems. The performances of the model are evaluated on the Secure Water Treatment (SWaT) dataset and the Water Distribution (WADI) dataset, the two most common industrial control systems datasets in the field of industrial anomaly detection. The experimental results show that our CAGCN achieves better results on precision, recall, and F1 score than the state-of-the-art methods.
Galloway B, Hancke G P. Introduction to industrial control networks. IEEE Communications Surveys & Tutorials, 2013, 15(2): 860–880. DOI: 10.1109/SURV.2012.071812. 00124.
Zhou S X, Han J H, Li C, Wu D C. Research on trusted measurement of industrial control network with Markov reward model. Telecommunications Science, 2015, 31(2): 113–117, 139. DOI: 10.11959/j.issn.1000-0801.2015013.
Wei Q Z. Industrial network control system security and management. Measurement & Control Technology, 2013, 32(2): 87–92. DOI: 10.19708/j.ckjs.2013.02.023.
Kim S, Heo G, Zio E, Shin J, Song J G. Cyber attack taxonomy for digital environment in nuclear power plants. Nuclear Engineering and Technology, 2020, 52(5): 995–1001. DOI: 10.1016/j.net.2019.11.001.
Lu G M. The analysis of present situation and future threats for the industrial control security in China. Cyberspace Security, 2018, 9(3): 1–7. DOI: 10.3969/j.issn.1674- 9456.2018.03.001.
Munro K. Deconstructing flame: The limitations of traditional defences. Computer Fraud & Security, 2012, 2012(10): 8–11. DOI: 10.1016/S1361-3723(12)70102-1.
Zhang X M, Wang L H, He Y Y, He S P. Analysis of potential vulnerabilities and security testing in industrial control system. Chinese Journal on Internet of Things, 2017, 1(1): 34–39. DOI: 10.11959/j.issn.2096-3750.2017.00005.
Kshetri N, Voas J. Hacking power grids: A current problem. Computer, 2017, 50(12): 91–95. DOI: 10.1109/MC.2017.4451203.
Das T K, Adepu S, Zhou J Y. Anomaly detection in industrial control systems using logical analysis of data. Computers & Security, 2020, 96: 101935. DOI: 10.1016/j.cose.2020.101935.
Liu L W, Hu M D, Kang C Q, Li X Y. Unsupervised anomaly detection for network data streams in industrial control systems. Information, 2020, 11(2): 105. DOI: 10.3390/info11020105.
Hao Y R, Sheng Y Q, Wang J L, Li C P. Network security event prediction based on recurrent neural network. Journal of Network New Media, 2017, 6(5): 54–58. DOI: 10.3969/j.issn.2095-347X.2017.05.010. (in Chinese)
Perales Gómez Á L, Fernández Maimó L, Celdrán A H, García Clemente F J. MADICS: A methodology for anomaly detection in industrial control systems. Symmetry, 2020, 12(10): 1583. DOI: 10.3390/sym12101583.
Mantere M, Sailio M, Noponen S. Network traffic features for anomaly detection in specific industrial control system network. Future Internet, 2013, 5(4): 460–473. DOI: 10.3390/fi5040460.
Wang T Y, Zeng P, Zhao J M, Liu X D, Zhang B W. Identification of influential nodes in industrial networks based on structure analysis. Symmetry, 2022, 14(2): 211. DOI: 10.3390/sym14020211.
Ur-Rehman A, Gondal I, Kamruzzaman J, Jolfaei A. Vulnerability modelling for hybrid industrial control system networks. Journal of Grid Computing, 2020, 18(4): 863–878. DOI: 10.1007/s10723-020-09528-w.
Zhang Q, Zhou C J, Tian Y C, Xiong N X, Qin Y Q, Hu B W. A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Industrial Informatics, 2018, 14(6): 2497–2506. DOI: 10.1109/TII.2017.2768998.
Kravchik M, Shabtai A. Efficient cyber attack detection in industrial control systems using lightweight neural networks and PCA. IEEE Trans. Dependable and Secure Computing, 2022, 19(4): 2179–2197. DOI: 10.1109/TDSC.2021.3050101.
Elnour M, Meskin N, Khan K, Jain R. A dual-isolation-forests-based attack detection framework for industrial control systems. IEEE Access, 2020, 8: 36639–36651. DOI: 10.1109/ACCESS.2020.2975066.
Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Processing, 2017, 26(10): 4843–4855. DOI: 10.1109/TIP.2017.2725580.
Xie X Z, Niu J W, Liu X F, Li Q F, Wang Y, Han J, Tang S J. DG-CNN: Introducing margin information into convolutional neural networks for breast cancer diagnosis in ultrasound images. Journal of Computer Science and Technology, 2022, 37(2): 277–294. DOI: 10.1007/s11390-020-0192-0.
Abdoli S, Cardinal P, Lameiras Koerich A. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Systems with Applications, 2019, 136: 252–263. DOI: 10.1016/j.eswa.2019.06.040.
Abdelaty M, Doriguzzi-Corin R, Siracusa D. DAICS: A deep learning solution for anomaly detection in industrial control systems. IEEE Trans. Emerging Topics in Computing, 2022, 10(2): 1117–1129. DOI: 10.1109/TETC.2021. 3073017.
Kusakina N M, Orlov S P, Kravets O J. Convolutional neural network for detecting anomalies in the control system of a machine-building enterprise. IOP Conference Series: Materials Science and Engineering, 2020, 862: 052020. DOI: 10.1088/1757-899X/862/5/052020.
Salama M, El-Dakhakhni W, Tait M. Mixed strategy for power grid resilience enhancement under cyberattack. Sustainable and Resilient Infrastructure, 2022, 7(5): 568–588. DOI: 10.1080/23789689.2021.1974675.
Milanović J V, Zhu W T. Modeling of interconnected critical infrastructure systems using complex network theory. IEEE Trans. Smart Grid, 2018, 9(5): 4637–4648. DOI: 10.1109/TSG.2017.2665646.
Zhang Z W, Cui P, Zhu W W. Deep learning on graphs: A survey. IEEE Trans. Knowledge and Data Engineering, 2022, 34(1): 249–270. DOI: 10.1109/TKDE.2020.2981333.
Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans. Neural Networks, 2009, 20(1): 61–80. DOI: 10.1109/TNN.2008.2005605.
Zhao L, Song Y J, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H F. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intelligent Transportation Systems, 2020, 21(9): 3848–3858. DOI: 10.1109/TITS.2019.2935152.
Ricaud B, Borgnat P, Tremblay N, Gonçalves P, Vandergheynst P. Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs. Comptes Rendus Physique, 2019, 20(5): 474–488. DOI: 10.1016/j.crhy.2019.08.003.
Hammond D K, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 2011, 30(2): 129–150. DOI: 10.1016/j.acha.2010.04.005.
Das K, Samanta S, Pal M. Study on centrality measures in social networks: A survey. Social Network Analysis and Mining, 2018, 8(1): 13. DOI: 10.1007/s13278-018-0493-2.
Landherr A, Friedl B, Heidemann J. A critical review of centrality measures in social networks. Business & Information Systems Engineering, 2010, 2(6): 371–385. DOI: 10.1007/s12599-010-0127-3.
Tuğal İ, Karcı A. Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks. Physica A: Statistical Mechanics and its Applications, 2019, 523: 352–363. DOI: 10.1016/j.physa.2019.02.026.
Morelli S A, Ong D C, Makati R, Jackson M O, Zaki J. Empathy and well-being correlate with centrality in different social networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9843–9847. DOI: 10.1073/pnas.1702155114.
Leydesdorff L, Wagner C S, Bornmann L. Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. Scientometrics, 2018, 114(2): 567–592. DOI: 10.1007/s11192-017-2528-2.
Ding Y, Yan E J, Frazho A, Caverlee J. PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2229–2243. DOI: 10.1002/asi.v60:11.
Ji P S, Jin J S. Coauthorship and citation networks for statisticians. The Annals of Applied Statistics, 2016, 10(4): 1779–1812. DOI: 10.1214/15-AOAS896.
Samad A, Arshad Islam M, Azhar Iqbal M, Aleem M. Centrality-based paper citation recommender system. EAI Endorsed Trans. Industrial Networks and Intelligent Systems, 2019, 6(19): e2. DOI: 10.4108/eai.13-6-2019.159121.
Cickovski T, Peake E, Aguiar-Pulido V, Narasimhan G. ATria: A novel centrality algorithm applied to biological networks. BMC Bioinformatics, 2017, 18(Suppl 8): 239. DOI: 10.1186/s12859-017-1659-z.
Koschützki D, Schreiber F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulation and Systems Biology, 2008, 2: 193–201. DOI: 10.4137/grsb.s702.
Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 2018, 12(1): 80. DOI: 10.1186/s12918-018-0598-2.
Jayasinghe A, Sano K, Rattanaporn K. Application for developing countries: Estimating trip attraction in urban zones based on centrality. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(5): 464–476. DOI: 10.1016/j.jtte.2017.05.011.
Gao S, Wang Y L, Gao Y, Liu Y. Understanding urban traffic-flow characteristics: A rethinking of betweenness centrality. Environment and Planning B: Urban Analytics and City Science, 2013, 40(1): 135–153. DOI: 10.1068/b38141.
Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 2010, 32(3): 245–251. DOI: 10.1016/j.socnet.2010.03.006.
Bavelas A. Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America, 1950, 22(6): 725–730. DOI: 10.1121/1.1906679.
Freeman L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40(1): 35–41. DOI: 10.2307/ 3033543.
Brandes U. A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 2001, 25(2): 163–177. DOI: 10.1080/0022250X.2001.9990249.
Hage P, Harary F. Eccentricity and centrality in networks. Social Networks, 1995, 17(1): 57–63. DOI: 10.1016/0378-8733(94)00248-9.
Chen D B, Lü L Y, Shang M S, Zhang Y C, Zhou T. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 2012, 391(4): 1777–1787. DOI: 10.1016/j.physa.2011.09.017.
Bonacich P. Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 1972, 2(1): 113–120. DOI: 10.1080/0022250X.1972.9989806.
Stephenson K, Zelen M. Rethinking centrality: Methods and examples. Social Networks, 1989, 11(1): 1–37. DOI: 10.1016/0378-8733(89)90016-6.