Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The glinty details from complex microstructures significantly enhance rendering realism. However, the previous methods use high-resolution normal maps to define each micro-geometry, which requires huge memory overhead. This paper observes that many self-similarity materials have independent structural characteristics, which we define as tiny example microstructures. We propose a procedural model to represent microstructures implicitly by performing spatial transformations and spatial distribution on tiny examples. Furthermore, we precompute normal distribution functions (NDFs) by 4D Gaussians for tiny examples and store them in multi-scale NDF maps. Combined with a tiny example based NDF evaluation method, complex glinty surfaces can be rendered simply by texture sampling. The experimental results show that our tiny example based the microstructure rendering method is GPU-friendly, successfully reproducing high-frequency reflection features of different microstructures in real time with low memory and computational overhead.
Yan L Q, Hašan M, Marschner S, Ramamoorthi R. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graphics, 2016, 35(4): Article No. 56. DOI: 10.1145/2897824.2925915.
Zhu J Q, Xu Y N, Wang L. A stationary SVBRDF material modeling method based on discrete microsurface. Computer Graphics Forum, 2019, 38(7): 745–754. DOI: 10. 1111/cgf.13876.
Wang B B, Hašan M, Holzschuch N, Yan L Q. Example-based microstructure rendering with constant storage. ACM Trans. Graphics, 2020, 39(5): Article No. 162. DOI: 10.1145/3406836.
Tan H W, Zhu J Q, Xu Y N, Meng X X, Wang L, Yan L Q. Real-time microstructure rendering with MIP-mapped normal map samples. Computer Graphics Forum, 2022, 41(1): 495–506. DOI: 10.1111/cgf.14448.
Yan L Q, Hašan M, Jakob W, Lawrence J, Marschner S, Ramamoorthi R. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graphics, 2014, 33(4): 116. DOI: 10.1145/2601097.2601155.
Chermain X, Claux F, Mérillou S. Glint rendering based on a multiple-scattering patch BRDF. Computer Graphics Forum, 2019, 38(4): 27–37. DOI: 10.1111/cgf.13767.
Yan L Q, Hašan M, Walter B, Marschner S, Ramamoorthi R. Rendering specular microgeometry with wave optics. ACM Trans. Graphics, 2018, 37(4): 75. DOI: 10.1145/3197517.3201351.
Guo J, Chen Y J, Guo Y W, Pan J G. A physically-based appearance model for special effect pigments. Computer Graphics Forum, 2018, 37(4): 67–76. DOI: 10.1111/cgf.13476.
Xia M Q, Walter B, Hery C, Maury O, Michielssen E, Marschner S. A practical wave optics reflection model for hair and fur. ACM Trans. Graphics, 2023, 42(4): Article No. 39. DOI: 10.1145/3592446.
Yu Y C, Xia M Q, Walter B, Michielssen E, Marschner S. A full-wave reference simulator for computing surface reflectance. ACM Trans. Graphics, 2023, 42(4): 109. DOI: 10. 1145/3592414.
Zhu J Q, Zhao S Z, Xu Y N, Meng X X, Wang L, Yan L Q. Recent advances in glinty appearance rendering. Computational Visual Media, 2022, 8(4): 535–552. DOI: 10.1007/s41095-022-0280-x.
Gamboa L E, Guertin J P, Nowrouzezahrai D. Scalable appearance filtering for complex lighting effects. ACM Trans. Graphics, 2018, 37(6): Article No. 277. DOI: 10.1145/3272127.3275058.
Atanasov A, Wilkie A, Koylazov V, Křivánek J. A multiscale microfacet model based on inverse bin mapping. Computer Graphics Forum, 2021, 40(2): 103–113. DOI: 10.1111/cgf.142618.
Fan J H, Wang B B, Wu W S, Hašan M, Yang J, Yan L Q. Efficient specular glints rendering with differentiable regularization. IEEE Trans. Visualization and Computer Graphics, 2023, 29(6): 2940–2949. DOI: 10.1109/TVCG.2022.3144479.
Jakob W, Hašan M, Yan L Q, Lawrence J, Ramamoorthi R, Marschner S. Discrete stochastic microfacet models. ACM Trans. Graphics, 2014, 33(4): Article No. 115. DOI: 10.1145/2601097.2601186.
Wang B B, Wang L, Holzschuch N. Fast global illumination with discrete stochastic microfacets using a filterable model. Computer Graphics Forum, 2018, 37(7): 55–64. DOI: 10.1111/cgf.13547.
Raymond B, Guennebaud G, Barla P. Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graphics, 2016, 35(4): Article No. 57. DOI: 10.1145/2897824.2925945.
Werner S, Velinov Z, Jakob W, Hullin M B. Scratch iridescence: Wave-optical rendering of diffractive surface structure. ACM Trans. Graphics, 2017, 36(6): Article No. 207. DOI: 10.1145/3130800.3130840.
Deng H, Liu Y, Wang B B, Yang J, Ma L, Holzschuch N, Yan L Q. Constant-cost spatio-angular prefiltering of glinty appearance using tensor decomposition. ACM Trans. Graphics, 2022, 41(2): Article No. 22. DOI: 10.1145/3507915.
Kuznetsov A, Hašan M, Xu Z X, Yan L Q, Walter B, Kalantari N K, Marschner S, Ramamoorthi R. Learning generative models for rendering specular microgeometry. ACM Trans. Graphics, 2019, 38(6): Article No. 225. DOI: 10.1145/3355089.3356525.
Guo Y, Hašan M, Yan L, Zhao S. A Bayesian inference framework for procedural material parameter estimation. Computer Graphics Forum, 2020, 39(7): 255–266. DOI: 10.1111/cgf.14142.
Deliot T, Belcour L. Real-time rendering of glinty appearances using distributed binomial laws on anisotropic grids. Computer Graphics Forum, 2023, 42(8): e14866. DOI: 10.1111/cgf.14866.
Chermain X, Sauvage B, Dischler J M, Dachsbacher C. Procedural physically based BRDF for real-time rendering of glints. Computer Graphics Forum, 2020, 39(7): 243–253. DOI: 10.1111/cgf.14141.
Chermain X, Lucas S, Sauvage B, Dischler J M, Dachsbacher C. Real-time geometric glint anti-aliasing with normal map filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4(1): Article No. 1. DOI: 10.1145/3451257.
Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Trans. Graphics, 1982, 1(1): 7–24. DOI: 10.1145/357290.357293.
Wang B B, Deng H, Holzschuch N. Real-time glints rendering with pre-filtered discrete stochastic microfacets. Computer Graphics Forum, 2020, 39(6): 144–154. DOI: 10.1111/cgf.14007.
Velinov Z, Werner S, Hullin M B. Real-time rendering of wave-optical effects on scratched surfaces. Computer Graphics Forum, 2018, 37(2): 123–134. DOI: 10.1111/cgf.13347.
Shen P F, Li R Z, Wang B B, Liu L G. Scratch-based reflection art via differentiable rendering. ACM Trans. Graphics, 2023, 42(4): 65. DOI: 10.1145/3592142.