AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Survey

Overcoming Spatial Constraints in VR: A Survey of Redirected Walking Techniques

Academy of Arts and Design, Tsinghua University, Beijing 100084, China
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
College of Computer Technology and Application, Qinghai University, Xining 810016, China
Zhili College, Tsinghua University, Beijing 100084, China
School of Computer, Beijing Information Science and Technology University, Beijing 100192, China
Department of Physics, Tsinghua University, Beijing 100084, China
School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

Equally Contributed (Jia-Hong Liu wrote the section on the evaluation of redirected walking methods. Yang-Fu Ren wrote the section on detection thresholds of redirection gains. Both Jia-Hong Liu and Yang-Fu Ren jointly contributed to the overall revision of the paper.)

Show Author Information

Abstract

As the virtual reality (VR) technology strives to provide immersive and natural user experiences, the challenge of aligning vast virtual environments with limited physical spaces remains significant. This survey comprehensively explores the advancements in redirected walking (RDW) techniques aimed at overcoming spatial constraints in VR. RDW addresses this by subtly manipulating users’ physical movements to allow for seamless navigation within constrained areas. The survey delves into gain perception mechanisms, detailing how slight discrepancies between virtual and real-world movements can be utilized without user awareness, thus extending the effective navigable space. Various RDW control algorithms for gain-based RDW are analyzed, highlighting their implementation and effectiveness in maintaining immersion and minimizing perceptual disturbances. Furthermore, novel methods extending beyond traditional gain-based techniques are discussed, showcasing innovative approaches that further refine VR interactions. The practical implications of RDW in enhancing safety and reducing physical collisions in VR environments are underscored, alongside its potential to improve user experience by aligning virtual exploration more closely with natural human behavior patterns. Through a thorough review of existing literature and recent advancements, this survey provides a systematic understanding for researchers, developers, and industry professionals. It underscores the importance of RDW in the future of VR, emphasizing RDW's role in making VR more accessible and practical across various applications, from education and training to therapy and entertainment. The paper concludes with a forward-looking perspective on the continued evolution and potential of RDW in revolutionizing virtual reality experiences.

Electronic Supplementary Material

Download File(s)
JCST-2407-14585-Highlights.pdf (164.6 KB)

References

[1]
Burdea G C, Coiffet P. Virtual Reality Technology. John Wiley & Sons, 2003.
[2]

Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Visualization and Computer Graphics , 2010, 16(1): 17–27. DOI: 10.1109/TVCG.2009.62.

[3]
Bozgeyikli E, Raij A, Katkoori S, Dubey R. Point & teleport locomotion technique for virtual reality. In Proc. the 2016 Annual Symposium on Computer-Human Interaction in Play, Oct. 2016, pp.205–216. DOI: 10.1145/2967934.2968105.
[4]
Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: Joystick, teleportation, and redirected walking. In Proc. the 2018 Virtual Reality International Conference-Laval Virtual, Apr. 2018, Article No. 4. DOI: 10.1145/3234253.3234291.
[5]
Usoh M, Arthur K, Whitton M C, Bastos R, Steed A, Slater M, Brooks Jr F P. Walking > walking-in-place > flying, in virtual environments. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, Jul. 1999, pp.359–364. DOI: 10.1145/311535.311589.
[6]
Razzaque S, Kohn Z, Whitton M C. Redirected walking. In Proc. the 22nd Annual Conference of the European Association for Computer Graphics, Sept. 2001.
[7]
Razzaque S. Redirected walking [Ph. D. Thesis]. The University of North Carolina at Chapel Hill, Chapel Hill, 2005.
[8]

Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications , 2018, 38(2): 44–56. DOI: 10.1109/MCG.2018.111125628.

[9]

Hodgson E, Bachmann E. Comparing four approaches to generalized redirected walking: Simulation and live user data. IEEE Trans. Visualization and Computer Graphics , 2013, 19(4): 634–643. DOI: 10.1109/TVCG.2013.28.

[10]
Azmandian M, Grechkin T, Bolas M, Suma E. Physical space requirements for redirected walking: How size and shape affect performance. In Proc. the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments, Oct. 2015, pp.93–100.
[11]
Thomas J, Rosenberg E S. A general reactive algorithm for redirected walking using artificial potential functions. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.56–62. DOI: 10.1109/VR.2019.8797983.
[12]

Bachmann E R, Hodgson E, Hoffbauer C, Messinger J. Multi-user redirected walking and resetting using artificial potential fields. IEEE Trans. Visualization and Computer Graphics , 2019, 25(5): 2022–2031. DOI: 10.1109/TVCG.2019.2898764.

[13]
Dong T, Shen Y, Gao T, Fan J. Dynamic density-based redirected walking towards multi-user virtual environments. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, Mar. 27-Apr. 1, 2021, pp.626–634. DOI: 10.1109/VR50410.2021.00088.
[14]
Lee D Y, Cho Y H, Min D H, Lee I K. Optimal planning for redirected walking based on reinforcement learning in multi-user environment with irregularly shaped physical space. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2020, pp.155–163. DOI: 10.1109/VR46266.2020.00034.
[15]

Williams N L, Bera A, Manocha D. ARC: Alignment-based redirection controller for redirected walking in complex environments. IEEE Trans. Visualization and Computer Graphics , 2021, 27(5): 2535–2544. DOI: 10.1109/TVCG.2021.3067781.

[16]
Nescher T, Kunz A. Using head tracking data for robust short term path prediction of human locomotion. In Transactions on Computational Science XVIII, Gavrilova M L, Tan C J K, Kuijper A (eds. ), Springer, 2013, pp.172–191. DOI: 10.1007/978-3-642-38803-3_10.
[17]

Zmuda M A, Wonser J L, Bachmann E R, Hodgson E. Optimizing constrained-environment redirected walking instructions using search techniques. IEEE Trans. Visualization and Computer Graphics , 2013, 19(11): 1872–1884. DOI: 10.1109/TVCG.2013.88.

[18]

Xu S Z, Liu J H, Wang M, Zhang F L, Zhang S H. Multi-user redirected walking in separate physical spaces for online VR scenarios. IEEE Trans. Visualization and Computer Graphics , 2024, 30(4): 1916–1926. DOI: 10.1109/TVCG.2023.3251648.

[19]
Fan C W, Xu S Z, Yu P, Zhang F L, Zhang S H. Redirected walking based on historical user walking data. In Proc. the 2023 IEEE Conference Virtual Reality and 3D User Interfaces, Mar. 2023, pp.53–62. DOI: 10.1109/VR55154.2023.00021.
[20]
Williams B, Narasimham G, Rump B, McNamara T P, Carr T H, Rieser J, Bodenheimer B. Exploring large virtual environments with an HMD when physical space is limited. In Proc. the 4th Symposium on Applied Perception in Graphics and Visualization, Jul. 2007, pp.41–48. DOI: 10.1145/1272582.1272590.
[21]

Hodgson E, Bachmann E, Waller D. Redirected walking to explore virtual environments: Assessing the potential for spatial interference. ACM Trans. Applied Perception (TAP) , 2011, 8(4): Article No. 22. DOI: 10.1145/2043603.2043604.

[22]
Peck T C, Fuchs H, Whitton M C. An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotion interfaces. In Proc. the 2011 IEEE Virtual Reality Conference, Mar. 2011, pp.55–62. DOI: 10.1109/VR.2011.5759437.
[23]

Bruder G, Lubos P, Steinicke F. Cognitive resource demands of redirected walking. IEEE Trans. Visualization and Computer Graphics , 2015, 21(4): 539–544. DOI: 10.1109/TVCG.2015.2391864.

[24]

Lappe M, Bremmer F, van den Berg A V. Perception of self-motion from visual flow. Trends in Cognitive Sciences , 1999, 3(9): 329–336. DOI: 10.1016/S1364-6613(99)01364-9.

[25]

Hülemeier A G, Lappe M. Visual perception of travel distance for self-motion through crowds. Journal of Vision , 2023, 23(4): Article No. 7. DOI: 10.1167/jov.23.4.7.

[26]

Hülemeier A G, Lappe M. Illusory percepts of curvilinear self-motion when moving through crowds. Journal of Vision , 2023, 23(14): Article No. 6. DOI: 10.1167/jov.23.14.6.

[27]
Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Analyses of human sensitivity to redirected walking. In Proc. the 2008 ACM Symposium on Virtual Reality Software and Technology, Oct. 2008, pp.149–156. DOI: 10.1145/1450579.1450611.
[28]

Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: Sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Visualization and Computer Graphics , 2017, 23(4): 1389–1398. DOI: 10.1109/TVCG.2017.2657220.

[29]
You C, Benda B, Rosenberg E S, Ragan E, Lok B, Thomas J. Strafing gain: Redirecting users one diagonal step at a time. In Proc. the 2022 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2022, pp.603–611. DOI: 10.1109/ISMAR55827.2022.00077.
[30]

Mayor J, Raya L, Bayona S, Sanchez A. Multi-technique redirected walking method. IEEE Trans. Emerging Topics in Computing , 2022, 10(2): 997–1008. DOI: 10.1109/TETC.2021.3062285.

[31]

Xu S Z, Chen F X Y, Gong R, Zhang F L, Zhang S H. BiRD: Using bidirectional rotation gain differences to redirect users during back-and-forth head turns in walking. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2693–2702. DOI: 10.1109/TVCG.2024.3372094.

[32]
Cho Y H, Min D H, Huh J S, Lee S H, Yoon J S, Lee I K. Walking outside the box: Estimation of detection thresholds for non-forward steps. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, Mar. 27 -Apr. 1, 2021, pp.448–454. DOI: 10.1109/VR50410.2021.00068.
[33]

Dong T, Gao T, Dong Y, Wang L, Hu K, Fan J. FREE-RDW: A multi-user redirected walking method for supporting non-forward steps. IEEE Trans. Visualization and Computer Graphics , 2023, 29(5): 2315–2325. DOI: 10.1109/TVCG.2023.3247107.

[34]
Hu L, Zhang Y, Wang R, Gao Z, Bao H, Hua W. Human sensitivity to slopes of slanted paths. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.984–985. DOI: 10.1109/VR.2019.8798248.
[35]
Matsumoto K, Narumi T, Tanikawa T, Hirose M. Walking uphill and downhill: Redirected walking in the vertical direction. In Proc. the 2017 ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, Jul. 30-Aug. 3, 2017, Article No. 37. DOI: 10.1145/3102163.3102227.
[36]
Zhang Y, Wu J, Liu Q. The sloped shoes: Influence human perception of the virtual slope. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, Mar. 2022, pp.826–827. DOI: 10.1109/VRW55335.2022.00264.
[37]
Miyazaki K, Nishihara I, Nakata T. Investigation of the effectiveness by redirected walking with tilt presentation to the sole. In Proc. the 2023 International Workshop on Advanced Imaging Technology, Mar. 2023, pp.129–133. DOI: 10.1117/12.2666577.
[38]
Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2020, pp.101–107. DOI: 10.1109/VR46266.2020.00028.
[39]
Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Redirected jumping: Imperceptibly manipulating jump motions in virtual reality. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.386–394. DOI: 10.1109/VR.2019.8797989.
[40]
Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: Perceptual detection rates for curvature gains. In Proc. the 32nd Annual ACM Symposium on User Interface Software and Technology, Oct. 2019, pp.1085–1092. DOI: 10.1145/3332165.3347868.
[41]
Li Y J, Jin D R, Wang M, Chen J L, Steinicke F, Hu S M, Zhao Q. Detection thresholds with joint horizontal and vertical gains in redirected jumping. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, Mar. 27-Apr.1, 2021, pp.95–102. DOI: 10.1109/VR50410.2021.00030.
[42]
Ogawa K, Fujita K, Takashima K, Kitamura Y. PseudoJumpOn: Jumping onto steps in virtual reality. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.635–643. DOI: 10.1109/VR51125.2022.00084.
[43]

Williams N L, Peck T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Trans. Visualization and Computer Graphics , 2019, 25(11): 3158–3168. DOI: 10.1109/TVCG.2019.2932213.

[44]

Bruder G, Interrante V, Phillips L, Steinicke F. Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Trans. Visualization and Computer Graphics , 2012, 18(4): 538–545. DOI: 10.1109/TVCG.2012.55.

[45]

Zhang J, Langbehn E, Krupke D, Katzakis N, Steinicke F. Detection thresholds for rotation and translation gains in 360° video-based telepresence systems. IEEE Trans. Visualization and Computer Graphics , 2018, 24(4): 1671–1680. DOI: 10.1109/TVCG.2018.2793679.

[46]
Kruse L, Langbehn E, Steinicke F. I can see on my feet while walking: Sensitivity to translation gains with visible feet. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2018, pp.305–312. DOI: 10.1109/VR.2018.8446216.
[47]
Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, Mar. 2020, pp.154–159. DOI: 10.1109/VRW50115.2020.00032.
[48]
Kim D, Shin J E, Lee J, Woo W. Adjusting relative translation gains according to space size in redirected walking for mixed reality mutual space generation. In Proc. the 2021 IEEE Virtual Reality and 3D User Interfaces, Mar. 27 -Apr. 1, 2021, pp.653–660. DOI: 10.1109/VR50410.2021.00091.
[49]

Kim D, Kim S, Shin J E, Yoon B, Kim J, Lee J, Woo W. The effects of spatial configuration on relative translation gain thresholds in redirected walking. Virtual Reality , 2023, 27(2): 1233–1250. DOI: 10.1007/s10055-022-00734-3.

[50]
Luo E X, Tang K Y, Xu S Z, Tong Q, Zhang S H. Walking telescope: Exploring the zooming effect in expanding detection threshold range for translation gain. In Proc. the 12th International Conference on Computational Visual Media, Apr. 2024, pp.252–273. DOI: 10.1007/978-981-97-2095-8_14.
[51]
Serafin S, Nilsson N C, Sikstrom E, De Goetzen A, Nordahl R. Estimation of detection thresholds for acoustic based redirected walking techniques. In Proc. the 2013 IEEE Virtual Reality, Mar. 2013, pp.161–162. DOI: 10.1109/VR.2013.6549412.
[52]
Paludan A, Elbaek J, Mortensen M, Zobbe M, Nilsson N C, Nordahl R, Reng L, Serafin S. Disguising rotational gain for redirected walking in virtual reality: Effect of visual density. In Proc. the 2016 IEEE Virtual Reality, Mar. 2016, pp.259–260. DOI: 10.1109/VR.2016.7504752.
[53]
Nilsson N C, Suma E, Nordahl R, Bolas M, Serafin S. Estimation of detection thresholds for audiovisual rotation gains. In Proc. the 2016 IEEE Virtual Reality, Mar. 2016, pp.241–242. DOI: 10.1109/VR.2016.7504743.
[54]
Brument H, Marchal M, Olivier A H, Argelaguet F. Influence of dynamic field of view restrictions on rotation gain perception in virtual environments. In Proc. the 2020 Virtual Reality and Augmented Reality: the 17th EuroVR International Conference, Nov. 2020, pp.20–40. DOI: 10.1007/978-3-030-62655-6_2.
[55]
Brument H, Marchal M, Olivier A H, Argelaguet Sanz F. Studying the influence of translational and rotational motion on the perception of rotation gains in virtual environments. In Proc. the 2021 ACM Symposium on Spatial User Interaction, Nov. 2021, Article No. 1. DOI: 10.1145/3485279.3485282.
[56]

Robb A, Kohm K, Porter J. Experience matters: Longitudinal changes in sensitivity to rotational gains in virtual reality. ACM Trans. Applied Perception , 2022, 19(4): 16. DOI: 10.1145/3560818.

[57]

Wang C, Zhang S H, Zhang Y, Zollmann S, Hu S M. On rotation gains within and beyond perceptual limitations for seated VR. IEEE Trans. Visualization and Computer Graphics , 2023, 29(7): 3380–3391. DOI: 10.1109/TVCG.2022.3159799.

[58]

Ogawa K, Fujita K, Sakamoto S, Takashima K, Kitamura Y. Exploring visual-auditory redirected walking using auditory cues in reality. IEEE Trans. Visualization and Computer Graphics , 2024, 30(8): 5782–5794. DOI: 10.1109/TVCG.2023.3309267.

[59]

Neth C T, Souman J L, Engel D, Kloos U, Bulthoff H H, Mohler B J. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Trans. Visualization and Computer Graphics , 2012, 18(7): 1041–1052. DOI: 10.1109/TVCG.2011.275.

[60]
Grechkin T, Thomas J, Azmandian M, Bolas M, Suma E. Revisiting detection thresholds for redirected walking: Combining translation and curvature gains. In Proc. the 2016 ACM Symposium on Applied Perception, Jul. 2016, pp.113–120. DOI: 10.1145/2931002.2931018.
[61]
Nguyen A, Rothacher Y, Lenggenhager B, Brugger P, Kunz A. Individual differences and impact of gender on curvature redirection thresholds. In Proc. the 2018 ACM Symposium on Applied Perception, Aug. 2018, Article No. 5. DOI: 10.1145/3225153.3225155.
[62]
Rietzler M, Gugenheimer J, Hirzle T, Deubzer M, Langbehn E, Rukzio E. Rethinking redirected walking: On the use of curvature gains beyond perceptual limitations and revisiting bending gains. In Proc. the 2018 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2018, pp.115–122. DOI: 10.1109/ISMAR.2018.00041.
[63]

Bölling L, Stein N, Steinicke F, Lappe M. Shrinking circles: Adaptation to increased curvature gain in redirected walking. IEEE Trans. Visualization and Computer Graphics , 2019, 25(5): 2032–2039. DOI: 10.1109/TVCG.2019.2899228.

[64]
Nguyen A, Rothacher Y, Lenggenhager B, Brugger P, Kunz A. Effect of sense of embodiment on curvature redirected walking thresholds. In Proc. the 2020 ACM Symposium on Applied Perception, Sept. 2020, Article No. 16. DOI: 10.1145/3385955.3407932.
[65]
Nguyen A, Rothacher Y, Efthymiou E, Lenggenhager B, Brugger P, Imbach L, Kunz A. Effect of cognitive load on curvature redirected walking thresholds. In Proc. the 26th ACM Symposium on Virtual Reality Software and Technology, Nov. 2020, Article No. 17. DOI: 10.1145/3385956.3418950.
[66]
Li H, Bian Y, Yang C, Zhang F, Zhao Y, Liu J, Meng X, Fan L. Estimation of human sensitivity for curvature gain of redirected walking technology. In Proc. the 23rd International Conference on Mobile Human-Computer Interaction, Sept. 27-Oct. 1, 2021, Article No. 33. DOI: 10.1145/3447526.3472018.
[67]
Mostajeran F, Schneider S, Bruder G, Kühn S, Steinicke F. Analyzing cognitive demands and detection thresholds for redirected walking in immersive forest and urban environments. In Proc. the 2024 IEEE Conference Virtual Reality and 3D User Interfaces, Mar. 2024, pp.61–71. DOI: 10.1109/VR58804.2024.00030.
[68]
Hoshikawa Y, Fujita K, Takashima K, Fjeld M, Kitamura Y. RedirectedDoors: Redirection while opening doors in virtual reality. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.464–473. DOI: 10.1109/VR51125.2022.00066.
[69]
Wichmann F A, Hill N J. The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 2001, 63(8): 1293–1313. DOI: 10.3758/bf03194544.
[70]
Ehrenstein W H, Ehrenstein A. Psychophysical methods. In Modern Techniques in Neuroscience Research, Windhorst U, Johansson H (eds. ), Springer, 1999, pp.1211–1241. DOI: 10.1007/978-3-642-58552-4_43.
[71]
Congdon B J, Steed A. Sensitivity to rate of change in gains applied by redirected walking. In Proc. the 25th ACM Symposium on Virtual Reality Software and Technology, Nov. 2019, Article No. 3. 10.1145/3359996.3364277 DOI: 10.1145/3359996.3364277.
[72]

Taylor M M, Creelman C D. PEST: Efficient estimates on probability functions. The Journal of the Acoustical Society of America , 1967, 41(4A): 782–787. DOI: 10.1121/1.1910407.

[73]
Hutton C, Ziccardi S, Medina J, Rosenberg E S. Individualized calibration of rotation gain thresholds for redirected walking. In Proc. the 2018 International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments, Nov. 2018. DOI: 10.2312/egve.20181315.
[74]

Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology , 1993, 3(3): 203–220. DOI: 10.1207/s15327108ijap0303_3.

[75]

Keshavarz B, Hecht H. Validating an efficient method to quantify motion sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society , 2011, 53(4): 415–426. DOI: 10.1177/0018720811403736.

[76]

Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology , 1988, 52: 139–183. DOI: 10.1016/S0166-4115(08)62386-9.

[77]

Kim H, Jeon S B, Lee I K. Locomotion techniques for dynamic environments: Effects on spatial knowledge and user experiences. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2184–2194. DOI: 10.1109/TVCG.2024.3372074.

[78]
Boletsis C. A user experience questionnaire for VR locomotion: Formulation and preliminary evaluation. In Proc. the 7th International Conference, Augmented Reality, Virtual Reality, and Computer Graphics, Sept. 2020, pp.157–167. DOI: 10.1007/978-3-030-58465-8_11.
[79]

Schubert T, Friedmann F, Regenbrecht H. The experience of presence: Factor analytic insights. Presence , 2001, 10(3): 266–281. DOI: 10.1162/105474601300343603.

[80]

Warren W H Jr, Kay B A, Zosh W D, Duchon A P, Sahuc S. Optic flow is used to control human walking. Nature Neuroscience , 2001, 4(2): 213–216. DOI: 10.1038/84054.

[81]
Jaekl P M, Allison R S, Harris L R, Jasiobedzka U T, Jenkin H L, Jenkin M R, Zacher J E, Zikovitz D C. Perceptual stability during head movement in virtual reality. In Proc. the 2002 IEEE Virtual Reality, Mar. 2002, pp.149–155. DOI: 10.1109/VR.2002.996517.
[82]

Rothacher Y, Nguyen A, Lenggenhager B, Kunz A, Brugger P. Visual capture of gait during redirected walking. Scientific Reports , 2018, 8(1): Article No. 17974. DOI: 10.1038/s41598-018-36035-6.

[83]

Bruder G, Steinicke F, Wieland P, Lappe M. Tuning self-motion perception in virtual reality with visual illusions. IEEE Trans. Visualization and Computer Graphics , 2012, 18(7): 1068–1078. DOI: 10.1109/TVCG.2011.274.

[84]
Bolte B, Bruder G, Steinicke F, Hinrichs K, Lappe M. Augmentation techniques for efficient exploration in head-mounted display environments. In Proc. the 17th ACM Symposium on Virtual Reality Software and Technology, Nov. 2010, pp.11–18. DOI: 10.1145/1889863.1889865.
[85]
Nogalski M, Fohl W. Acoustic redirected walking with auditory cues by means of wave field synthesis. In Proc. the 2016 IEEE Virtual Reality, Mar. 2016, pp.245–246. DOI: 10.1109/VR.2016.7504745.
[86]
Gao P, Matsumoto K, Narumi T, Hirose M. Visual-auditory redirection: Multimodal integration of incongruent visual and auditory cues for redirected walking. In Proc. the 2020 IEEE International Symposium on Mixed and Augmented Reality, Nov. 2020, pp.639–648. DOI: 10.1109/ISMAR50242.2020.00092.
[87]

Weller R, Brennecke B, Zachmann G. Redirected walking in virtual reality with auditory step feedback. The Visual Computer , 2022, 38(9): 3475–3486. DOI: 10.1007/S00371-022-02565-4.

[88]

Lee J, Hwang S, Ataya A, Kim S. Effect of optical flow and user VR familiarity on curvature gain thresholds for redirected walking. Virtual Reality , 2024, 28(1): Article No. 35. DOI: 10.1007/s10055-023-00935-4.

[89]
Steinicke F, Bruder G, Kohli L, Jerald J, Hinrichs K. Taxonomy and implementation of redirection techniques for ubiquitous passive haptic feedback. In Proc. the 2008 International Conference on Cyberworlds, Sept. 2008, pp.217–223. DOI: 10.1109/CW.2008.53.
[90]
Matsumoto K, Ban Y, Narumi T, Tanikawa T, Hirose M. Curvature manipulation techniques in redirection using haptic cues. In Proc. the 2016 IEEE Symposium on 3D User Interfaces, Mar. 2016, pp.105–108. DOI: 10.1109/3DUI.2016.7460038.
[91]
Matsumoto K, Aoyama K, Narumi T, Kuzuoka H. Redirected walking using noisy galvanic vestibular stimulation. In Proc. the 2021 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2021, pp.498–507. DOI: 10.1109/ISMAR52148.2021.00067.
[92]

Sakono H, Matsumoto K, Narumi T, Kuzuoka H. Redirected walking using continuous curvature manipulation. IEEE Trans. Visualization and Computer Graphics , 2021, 27(11): 4278–4288. DOI: 10.1109/TVCG.2021.3106501.

[93]
Congdon B J, Steed A. Sensitivity to rate of change in gains applied by redirected walking. In Proc. the 25th ACM Symposium on Virtual Reality Software and Technology, Nov. 2019, Article No. 3. DOI: 10.1145/3359996.3364277.
[94]

Schmelter T, Hernadi L, Störmer M A, Steinicke F, Hildebrand K. Interaction based redirected walking. Proceedings of the ACM on Computer Graphics and Interactive Techniques , 2021, 4(1): Article No. 9. DOI: 10.1145/3451264.

[95]
Nguyen A, Rothacher Y, Kunz A, Brugger P, Lenggenhager B. Effect of environment size on curvature redirected walking thresholds. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2018, pp.645–646. DOI: 10.1109/VR.2018.8446225.
[96]
Kim D, Kim J, Shin J E, Yoon B, Lee J, Woo W. Effects of virtual room size and objects on relative translation gain thresholds in redirected walking. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.379–388. DOI: 10.1109/VR51125.2022.00057.
[97]
Waldow K, Fuhrmann A, Grünvogel S M. Do textures and global illumination influence the perception of redirected walking based on translational gain? In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2018, pp.717–718. DOI: 10.1109/VR.2018.8446587.
[98]
Bachmann E R, Holm J, Zmuda M A, Hodgson E. Collision prediction and prevention in a simultaneous two-user immersive virtual environment. In Proc. the 2013 IEEE Virtual Reality, Mar. 2013, pp.89–90. DOI: 10.1109/VR.2013.6549377.
[99]
Chen H, Chen S, Rosenberg E S. Redirected walking in irregularly shaped physical environments with dynamic obstacles. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2018, pp.523–524. DOI: 10.1109/VR.2018.8446563.
[100]

Dong Z C, Fu X M, Yang Z, Liu L. Redirected smooth mappings for multiuser real walking in virtual reality. ACM Trans. Graphics (TOG) , 2019, 38(5): Article No. 149. DOI: 10.1145/3345554.

[101]
Lee D Y, Cho Y H, Lee I K. Real-time optimal planning for redirected walking using deep Q-learning. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.63–71. DOI: 10.1109/VR.2019.8798121.
[102]
Messinger J, Hodgson E, Bachmann E R. Effects of tracking area shape and size on artificial potential field redirected walking. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.72–80. DOI: 10.1109/VR.2019.8797818.
[103]
Dong T, Chen X, Song Y, Ying W, Fan J. Dynamic artificial potential fields for multi-user redirected walking. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2020, pp.146–154. DOI: 10.1109/VR46266.2020.00033.
[104]

Li H, Fan L. Mapping various large virtual spaces to small real spaces: A novel redirected walking method for immersive VR navigation. IEEE Access , 2020, 8: 180210–180221. DOI: 10.1109/ACCESS.2020.3027985.

[105]

Strauss R R, Ramanujan R, Becker A, Peck T C. A steering algorithm for redirected walking using reinforcement learning. IEEE Trans. Visualization and Computer Graphics , 2020, 26(5): 1955–1963. DOI: 10.1109/TVCG.2020.2973060.

[106]
Thomas J, Hutton Pospick C, Suma Rosenberg E. Towards physically interactive virtual environments: Reactive alignment with redirected walking. In Proc. the 26th ACM Symposium on Virtual Reality Software and Technology, Nov. 2020, Article No. 10. DOI: 10.1145/3385956.3418966.
[107]
Chen Z Y, Li Y J, Wang M, Steinicke F, Zhao Q. A reinforcement learning approach to redirected walking with passive haptic feedback. In Proc. the 2021 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2021, pp.184–192. DOI: 10.1109/ISMAR52148.2021.00033.
[108]

Williams N L, Bera A, Manocha D. Redirected walking in static and dynamic scenes using visibility polygons. IEEE Trans. Visualization and Computer Graphics , 2021, 27(11): 4267–4277. DOI: 10.1109/TVCG.2021.3106432.

[109]

Azmandian M, Yahata R, Grechkin T, Rosenberg E S. Adaptive redirection: A context-aware redirected walking meta-strategy. IEEE Trans. Visualization and Computer Graphics , 2022, 28(5): 2277–2287. DOI: 10.1109/TVCG.2022.3150500.

[110]

Wang M, Chen Z Y, Cai W C, Steinicke F. Transferable virtual-physical environmental alignment with redirected walking. IEEE Trans. Visualization and Computer Graphics , 2024, 30(3): 1696–1709. DOI: 10.1109/TVCG. 2022.3224073.

[111]

Xu S Z, Liu T Q, Liu J H, Zollmann S, Zhang S H. Making resets away from targets: POI aware redirected walking. IEEE Trans. Visualization and Computer Graphics , 2022, 28(11): 3778–3787. DOI: 10.1109/TVCG.2022.3203095.

[112]
Xu S Z, Lv T, He G, Chen C H, Zhang F L, Zhang S H. Optimal pose guided redirected walking with pose score precomputation. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.655–663. DOI: 10.1109/VR51125.2022.00086.
[113]

Wu X L, Hung H C, Babu S V, Chuang J H. Novel design and evaluation of redirection controllers using optimized alignment and artificial potential field. IEEE Trans. Visualization and Computer Graphics , 2023, 29(11): 4556–4566. DOI: 10.1109/TVCG.2023.3320208.

[114]

Chen J J, Hung H C, Sun Y R, Chuang J H. APF-S2T: Steering to target redirection walking based on artificial potential fields. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2464–2473. DOI: 10.1109/TVCG.2024.3372052.

[115]
Lee H J, Jeon S B, Cho Y H, Lee I K. MARR: A multi-agent reinforcement resetter for redirected walking. IEEE Trans. Visualization and Computer Graphics, 2024. DOI: 10.1109/TVCG.2024.3368043. (early access
[116]

Lee H J, Jeon S B, Cho Y H, Lee I K. Redirection strategy switching: Selective redirection controller for dynamic environment adaptation. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2474–2484. DOI: 10.1109/TVCG.2024.3372056.

[117]
Xu S Z, Huang K, Fan C W, Zhang S H. SafeRDW: Keep VR users safe when jumping using redirected walking. In Proc. the 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Mar. 2024, pp.365–375. DOI: 10.1109/VR58804.2024.00058.
[118]

Li Y J, Steinicke F, Wang M. A comprehensive review of redirected walking techniques: Taxonomy, methods, and future directions. Journal of Computer Science and Technology , 2022, 37(3): 561–583. DOI: 10.1007/s11390-022-2266-7.

[119]
Azmandian M, Grechkin T, Rosenberg E S. An evaluation of strategies for two-user redirected walking in shared physical spaces. In Proc. the 2017 IEEE Virtual Reality, Mar. 2017, pp.91–98. DOI: 10.1109/VR.2017.7892235.
[120]
Dong T, Song Y, Shen Y, Fan J. Simulation and evaluation of three-user redirected walking algorithm in shared physical spaces. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.894–895. DOI: 10.1109/VR.2019.8798319.
[121]

Nitzsche N, Hanebeck U D, Schmidt G. Motion compression for telepresent walking in large target environments. Presence , 2004, 13(1): 44–60. DOI: 10.1162/105474604774048225.

[122]
Interrante V, Ries B, Anderson L. Seven league boots: A new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In Proc. the 2007 IEEE Symposium on 3D User interfaces, Mar. 2007. DOI: 10.1109/3DUI.2007.340791.
[123]

Su J. Motion compression for telepresence locomotion. Presence: Teleoperators and Virtual Environments , 2007, 16(4): 385–398. DOI: 10.1162/pres.16.4.385.

[124]
Hirt C, Zank M, Kunz A. Short-term path prediction for virtual open spaces. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.978–979. DOI: 10.1109/VR.2019.8797709.
[125]
Zank M, Kunz A. Optimized graph extraction and locomotion prediction for redirected walking. In Proc. the 2017 IEEE Symposium on 3D User Interfaces, Mar. 2017, pp.120–129. DOI: 10.1109/3DUI.2017.7893328.
[126]
Qi M, Liu Y, Cui J. A novel redirected walking algorithm for VR navigation in small tracking area. In Proc. the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, Mar. 27-Apr. 1, 2021, pp.518–519. DOI: 10.1109/VRW52623.2021.00141.
[127]
Thomas J, Yong S, Rosenberg E S. Inverse kinematics assistance for the creation of redirected walking paths. In Proc. the 2022 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2022, pp.593–602. DOI: 10.1109/ISMAR55827.2022.00076.
[128]
Gandrud J, Interrante V. Predicting destination using head orientation and gaze direction during locomotion in VR. In Proc. the 2016 ACM Symposium on Applied Perception, Jul. 2016, pp.31–38. DOI: 10.1145/2931002.2931010.
[129]
Bremer G, Stein N, Lappe M. Predicting future position from natural walking and eye movements with machine learning. In Proc. the 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality, Nov. 2021, pp.19–28. DOI: 10.1109/AIVR52153.2021.00013.
[130]
Stein N, Bremer G, Lappe M. Eye tracking-based LSTM for locomotion prediction in VR. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.493–503. DOI: 10.1109/VR51125.2022.00069.
[131]
Jeon S B, Jung J, Park J, Lee I K. F-RDW: Redirected walking with forecasting future position. IEEE Trans. Visualization and Computer Graphics, 2024. DOI: 10.1109/TVCG.2024.3376080. (early access
[132]
Nescher T, Huang Y Y, Kunz A. Planning redirection techniques for optimal free walking experience using model predictive control. In Proc. the 2014 IEEE Symposium on 3D User Interfaces, Mar. 2014, pp.111–118. DOI: 10.1109/3DUI.2014.6798851.
[133]
Azmandian M, Grechkin T, Bolas M, Suma E. Automated path prediction for redirected walking using navigation meshes. In Proc. the 2016 IEEE Symposium on 3D User Interfaces, Mar. 2016, pp.63–66. DOI: 10.1109/3DUI.2016.7460032.
[134]
Hirt C, Zank M, Kunz A. PReWAP: Predictive redirected walking using artificial potential fields. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.976–977. DOI: 10.1109/VR.2019.8798118.
[135]

Congdon B J, Steed A. Monte-Carlo redirected walking: Gain selection through simulated walks. IEEE Trans. Visualization and Computer Graphics , 2023, 29(5): 2637–2646. DOI: 10.1109/TVCG.2023.3247093.

[136]

Jeon S B, Kwon S U, Hwang J Y, Cho Y H, Kim H, Park J, Lee I K. Dynamic optimal space partitioning for redirected walking in multi-user environment. ACM Trans. Graphics (TOG) , 2022, 41(4): Article No. 90. DOI: 10.1145/3528223.3530113.

[137]
Engel D, Curio C, Tcheang L, Mohler B, Bülthoff H H. A psychophysically calibrated controller for navigating through large environments in a limited free-walking space. In Proc. the 2008 ACM Symposium on Virtual Reality Software and Technology, Oct. 2008, pp.157–164. DOI: 10.1145/1450579.1450612.
[138]
Suma E A, Bruder G, Steinicke F, Krum D M, Bolas M. A taxonomy for deploying redirection techniques in immersive virtual environments. In Proc. the 2012 IEEE Virtual Reality Workshops, Mar. 2012, pp.43–46. DOI: 10.1109/VR.2012.6180877.
[139]

Teixeira J, Miellet S, Palmisano S. Effects of vection type and postural instability on cybersickness. Virtual Reality , 2024, 28(2): Article No. 82. DOI: 10.1007/s10055-024-00969-2.

[140]
Yu R, Lages W S, Nabiyouni M, Ray B, Kondur N, Chandrashekar V, Bowman D A. Bookshelf and bird: Enabling real walking in large VR spaces through cell-based redirection. In Proc. the 2017 IEEE Symposium on 3D User Interfaces, Mar. 2017, pp.116–119. DOI: 10.1109/3DUI.2017.7893327.
[141]
Langbehn E, Steinicke F. Redirected walking in virtual reality. In Encyclopedia of Computer Graphics and Games, Lee N (ed. ), Springer, 2018, pp.1–11. DOI: 10.1007/978-3-319-08234-9_253-1.
[142]
Bolte B, Bruder G, Steinicke F. The jumper metaphor: An effective navigation technique for immersive display setups. In Proc. the 2011 Virtual Reality International Conference, April 2011.
[143]

Rahimi K, Banigan C, Ragan E D. Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. IEEE Trans. Visualization and Computer Graphics , 2020, 26(6): 2273–2287. DOI: 10.1109/TVCG.2018.2884468.

[144]
Bruder G, Steinicke F, Hinrichs K H. Arch-Explore: A natural user interface for immersive architectural walkthroughs. In Proc. the 2009 IEEE Symposium on 3D User Interfaces, Mar. 2009, pp.75–82. DOI: 10.1109/3DUI.2009.4811208.
[145]
Freitag S, Rausch D, Kuhlen T. Reorientation in virtual environments using interactive portals. In Proc. the 2014 IEEE Symposium on 3D User Interfaces, Mar. 2014, pp.119–122. DOI: 10.1109/3DUI.2014.6798852.
[146]
Liu J, Parekh H, Al-Zayer M, Folmer E. Increasing walking in VR using redirected teleportation. In Proc. the 31st Annual ACM Symposium on User Interface Software and Technology, Oct. 2018, pp.521–529. DOI: 10.1145/3242587.3242601.
[147]
Simeone A L, Nilsson N C, Zenner A, Speicher M, Daiber F. The space bender: Supporting natural walking via overt manipulation of the virtual environment. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2020, pp.598–606. DOI: 10.1109/VR46266.2020.00082.
[148]
Han J, Moere A V, Simeone A L. Foldable spaces: An overt redirection approach for natural walking in virtual reality. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.167–175. DOI: 10.1109/VR51125.2022.00035.
[149]
Azmandian M, Grechkin T, Bolas M, Suma E. The redirected walking toolkit: A unified development platform for exploring large virtual environments. In Proc. the 2nd IEEE Workshop on Everyday Virtual Reality, Mar. 2016, pp.9–14. DOI: 10.1109/WEVR.2016.7859537.
[150]
Lee H J, Jeon S B, Cho Y H, Lee I K. Multi-user reset controller for redirected walking using reinforcement learning. arXiv: 2306.11433, 2023. https://arxiv.org/abs/2306.11433, Aug. 2024.
[151]

Zhang S H, Chen C, Zollmann S. One-step out-of-place resetting for redirected walking in VR. IEEE Trans. Visualization and Computer Graphics , 2023, 29(7): 3327–3339. DOI: 10.1109/TVCG.2022.3158609.

[152]

Zhang S H, Chen C H, Zheng F, Yang Y L, Hu S M. Adaptive optimization algorithm for resetting techniques in obstacle-ridden environments. IEEE Trans. Visualization and Computer Graphics , 2023, 29(4): 2080–2092. DOI: 10.1109/TVCG.2021.3139990.

[153]
Xie X, Lin Q, Wu H, Narasimham G, McNamara T P, Rieser J, Bodenheimer B. A system for exploring large virtual environments that combines scaled translational gain and interventions. In Proc. the 7th Symposium on Applied Perception in Graphics and Visualization, Jul. 2010, pp.65–72. DOI: 10.1145/1836248.1836260.
[154]
Kwon S U, Jeon S B, Hwang J Y, Cho Y H, Park J, Lee I K. Infinite virtual space exploration using space tiling and perceivable reset at fixed positions. In Proc. the 2022 IEEE International Symposium on Mixed and Augmented Reality, 2022, pp.758–767. DOI: 10.1109/ISMAR55827.2022.00094.
[155]

Bidder II W H, Tomlinson A. A comparison of saccadic and blink suppression in normal observers. Vision Research , 1997, 37(22): 3171–3179. DOI: 10.1016/S0042-6989(97)00110-7.

[156]

Bolte B, Lappe M. Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression. IEEE Trans. Visualization and Computer Graphics , 2015, 21(4): 545–552. DOI: 10.1109/TVCG.2015.2391851.

[157]

Langbehn E, Steinicke F, Lappe M, Welch G F, Bruder G. In the blink of an eye: Leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality. ACM Trans. Graphics (TOG) , 2018, 37(4): Article No. 66. DOI: 10.1145/3197517.3201335.

[158]
Davis K, Hayase T, Humer I, Woodard B, Eckhardt C. A quantitative analysis of redirected walking in virtual reality using saccadic eye movements. In Proc. the 17th International Symposium on Visual Computing, Oct. 2022, pp.205–216. DOI: 10.1007/978-3-031-20716-7_16.
[159]
Nguyen A, Kunz A. Discrete scene rotation during blinks and its effect on redirected walking algorithms. In Proc. the 24th ACM Symposium on Virtual Reality Software and Technology, Nov. 28-Dec. 1, 2018, Article No. 29. DOI: 10.1145/3281505.3281515.
[160]

Sun Q, Patney A, Wei L Y, Shapira O, Lu J, Asente P, Zhu S, McGuire M, Luebke D, Kaufman A. Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Trans. Graphics (TOG) , 2018, 37(4): 67. DOI: 10.1145/3197517.3201294.

[161]
Pinson E, Pietroszek K, Sun Q, Eckhardt C. An open framework for infinite walking with saccadic redirection. In Proc. the 26th ACM Symposium on Virtual Reality Software and Technology, Nov. 2020, Article No. 41. DOI: 10.1145/3385956.3422091.
[162]
Suma E A, Clark S, Krum D, Finkelstein S, Bolas M, Warte Z. Leveraging change blindness for redirection in virtual environments. In Proc. the 2011 IEEE Virtual Reality Conference, Mar. 2011, pp.159–166. DOI: 10.1109/VR.2011.5759455.
[163]

Suma E A, Lipps Z, Finkelstein S, Krum D M, Bolas M. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Visualization and Computer Graphics , 2012, 18(4): 555–564. DOI: 10.1109/TVCG.2012.47.

[164]
Vasylevska K, Kaufmann H, Bolas M, Suma E A. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In Proc. the 2013 IEEE Symposium on 3D User Interfaces, Mar. 2013, pp.39–42. DOI: 10.1109/3DUI.2013.6550194.
[165]

Simons D J, Rensink R A. Change blindness: Past, present, and future. Trends in Cognitive Sciences , 2005, 9(1): 16–20. DOI: 10.1016/j.tics.2004.11.006.

[166]
Vasylevska K, Kaufmann H. Towards efficient spatial compression in self-overlapping virtual environments. In Proc. the 2017 IEEE Symposium on 3D User Interfaces, Mar. 2017, pp.12–21. DOI: 10.1109/3DUI.2017.7893312.
[167]
Langbehn E, Lubos P, Steinicke F. Redirected spaces: Going beyond borders. In Proc. the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2018, pp.767–768. DOI: 10.1109/VR.2018.8446167.
[168]
Koltai B G, Husted J E, Vangsted R, Mikkelsen T N, Kraus M. Procedurally generated self overlapping mazes in virtual reality. In Proc. the 8th EAI International Conference on ArtsIT, and 4th EAI International Conference on DLI, Jul. 2020, pp.229–243. DOI: 10.1007/978-3-030-53294-9_16.
[169]
Cheng L P, Ofek E, Holz C, Wilson A D. VRoamer: Generating on-the-fly VR experiences while walking inside large, unknown real-world building environments. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.359–366. DOI: 10.1109/VR.2019.8798074.
[170]

Xu S Z, Huang K, Fan C W, Zhang S H. Spatial contraction based on velocity variation for natural walking in virtual reality. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2444–2453. DOI: 10.1109/TVCG.2024.3372109.

[171]

Sun Q, Wei L Y, Kaufman A. Mapping virtual and physical reality. ACM Trans. Graphics (TOG) , 2016, 35(4): Article No. 64. DOI: 10.1145/2897824.2925883.

[172]

Dong Z C, Fu X M, Zhang C, Wu K, Liu L. Smooth assembled mappings for large-scale real walking. ACM Trans. Graphics (TOG) , 2017, 36(6): Article No. 211. DOI: 10.1145/3130800.3130893.

[173]

Dong Z C, Wu W, Xu Z, Sun Q, Yuan G, Liu L, Fu X M. Tailored reality: Perception-aware scene restructuring for adaptive VR navigation. ACM Trans. Graphics (TOG) , 2021, 40(5): Article No. 193. DOI: 10.1145/3470847.

[174]
Lee J, Hwang S, Kim K, Kim S. Auditory and olfactory stimuli-based attractors to induce reorientation in virtual reality forward redirected walking. In Proc. the 2022 CHI Conference on Human Factors in Computing Systems Extended Abstracts, Apr. 29-May 5, 2022, Article No. 446. DOI: 10.1145/3491101.3519719.
[175]
Chen H, Fuchs H. Supporting free walking in a large virtual environment: Imperceptible redirected walking with an immersive distractor. In Proc. the 2017 Computer Graphics International Conference, Jun. 2017, Article No. 22. DOI: 10.1145/3095140.3095162.
[176]
Chen H, Fuchs H. Towards imperceptible redirected walking: Integrating a distractor into the immersive experience. In Proc. the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Feb. 2017, Article No. 22. DOI: 10.1145/3023368.3036844.
[177]
Cools R, Simeone A L. Investigating the effect of distractor interactivity for redirected walking in virtual reality. In Proc. the 2019 Symposium on Spatial User Interaction, Oct. 2019, Article No. 4. DOI: 10.1145/3357251.3357580.
[178]
Mahmud M R, Stewart M, Cordova A, Quarles J. Auditory feedback to make walking in virtual reality more accessible. In Proc. the 2022 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2022, pp.847–856. DOI: 10.1109/ISMAR55827.2022.00103.
[179]
Rewkowski N, Rungta A, Whitton M, Lin M. Evaluating the effectiveness of redirected walking with auditory distractors for navigation in virtual environments. In Proc. the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2019, pp.395–404. DOI: 10.1109/VR.2019.8798286.
[180]
Matsumoto K, Narumi T, Ban Y, Yanase Y, Tanikawa T, Hirose M. Unlimited corridor: A visuo-haptic redirection system. In Proc. the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, Nov. 2019, Article No. 18. DOI: 10.1145/3359997.3365705.
[181]
Askarbekkyzy N, Lin Y, Moon K, Bianchi A, Je S. Designing visuo-haptic illusions for Virtual Reality applications using floor-based shape-changing displays. In IASDR 2023: Life-Changing Design, De Sainz Molestina D, Galluzzo L, Rizzo F, Spallazzo D (eds.), 2023. DOI: 10.21606/iasdr.2023.466.
[182]
Tanaka K, Nakamura T, Matsumoto K, Kuzuoka H. Effect of hanger reflex on detection thresholds for hand redirection during forearm rotation. In Proc. the 2023 ACM Symposium on Applied Perception, Aug. 2023, Article No. 6. DOI: 10.1145/3605495.3605792.
[183]
Weiss Y, Villa S, Schmidt A, Mayer S, Müller F. Using pseudo-stiffness to enrich the haptic experience in virtual reality. In Proc. the 2023 CHI Conference on Human Factors in Computing Systems, Apr. 2023, Article No. 388. DOI: 10.1145/3544548.3581223.
[184]
Yamaguchi A, Yokoi S, Matsumoto K, Narumi T. TableMorph: Haptic experience with movable tables and redirection. In Proc. the 2023 SIGGRAPH Asia Emerging Technologies, Dec. 2023, Article No. 19. DOI: 10.1145/3610541.3614574.
[185]

Hoshikawa Y, Fujita K, Takashima K, Fjeld M, Kitamura Y. RedirectedDoors+: Door-opening redirection with dynamic haptics in room-scale VR. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2276–2286. DOI: 10.1109/TVCG.2024.3372105.

[186]
Hwang S, Lee J, Kim Y, Seo Y, Kim S. Electrical, vibrational, and cooling stimuli-based redirected walking: Comparison of various vestibular stimulation-based redirected walking systems. In Proc. the 2023 CHI Conference on Human Factors in Computing Systems, Apr. 2023, Article No. 767. DOI: 10.1145/3544548.3580862.
[187]
Sassi V F P, Porcino T, Clua E W G, Trevisan D G. Redefining redirected movement for wheelchair based interaction for virtual reality. In Proc. the 11th IEEE International Conference on Serious Games and Applications for Health, Aug. 2023. DOI: 10.1109/SeGAH57547.2023.10253796.
[188]
Hwang S, Kim Y, Seo Y, Kim S. Enhancing seamless walking in virtual reality: Application of bone-conduction vibration in redirected walking. In Proc. the 2023 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2023, pp.1181–1190. DOI: 10.1109/ISMAR59233.2023.00135.
[189]
Li Y J, Wang M, Steinicke F, Zhao Q. OpenRDW: A redirected walking library and benchmark with multi-user, learning-based functionalities and state-of-the-art algorithms. In Proc. the 2021 IEEE International Symposium on Mixed and Augmented Reality, Oct. 2021, pp.21–30. DOI: 10.1109/ISMAR52148.2021.00016.
[190]

Azmandian M, Yahata R, Grechkin T, Thomas J, Rosenberg E S. Validating simulation-based evaluation of redirected walking systems. IEEE Trans. Visualization and Computer Graphics , 2022, 28(5): 2288–2298. DOI: 10.1109/TVCG.2022.3150466.

[191]
Hirt C, Kompis Y, Holz C, Kunz A. The chaotic behavior of redirection-revisiting simulations in redirected walking. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.524–533. DOI: 10.1109/VR51125.2022.00072.
[192]
Brooke J. SUS: A ‘quick and dirty’ usability scale. In Usability Evaluation in Industry, Jordan P W, Thomas B, McClelland I L, Weerdmeester B (eds. ), CRC Press, 1996. DOI: 10.1201/9781498710411.
[193]
Martinez E S, Wu A S, McMahan R P. Research trends in virtual reality locomotion techniques. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.270–280. DOI: 10.1109/VR51125.2022.00046.
[194]

Prinz L M, Mathew T, Weyers B. A systematic literature review of virtual reality locomotion taxonomies. IEEE Trans. Visualization and Computer Graphics , 2023, 29(12): 5208–5223. DOI: 10.1109/TVCG.2022.3206915.

[195]
Paris R A, Buck L E, McNamara T P, Bodenheimer B. Evaluating the impact of limited physical space on the navigation performance of two locomotion methods in immersive virtual environments. In Proc. the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, Mar. 2022, pp.821–831. DOI: 10.1109/VR51125.2022.00104.
[196]
Tseng W J, Bonnail E, McGill M, Khamis M, Lecolinet E, Huron S, Gugenheimer J. The dark side of perceptual manipulations in virtual reality. In Proc. the 2022 CHI Conference on Human Factors in Computing Systems, Apr. 29 -May 5, 2022, Article No. 612. DOI: 10.1145/3491102.3517728.
Journal of Computer Science and Technology
Pages 841-870
Cite this article:
Liu J-H, Ren Y-F, Gan QW, et al. Overcoming Spatial Constraints in VR: A Survey of Redirected Walking Techniques. Journal of Computer Science and Technology, 2024, 39(4): 841-870. https://doi.org/10.1007/s11390-024-4585-3

99

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 July 2024
Accepted: 27 July 2024
Published: 20 September 2024
© Institute of Computing Technology, Chinese Academy of Sciences 2024
Return