Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As the virtual reality (VR) technology strives to provide immersive and natural user experiences, the challenge of aligning vast virtual environments with limited physical spaces remains significant. This survey comprehensively explores the advancements in redirected walking (RDW) techniques aimed at overcoming spatial constraints in VR. RDW addresses this by subtly manipulating users’ physical movements to allow for seamless navigation within constrained areas. The survey delves into gain perception mechanisms, detailing how slight discrepancies between virtual and real-world movements can be utilized without user awareness, thus extending the effective navigable space. Various RDW control algorithms for gain-based RDW are analyzed, highlighting their implementation and effectiveness in maintaining immersion and minimizing perceptual disturbances. Furthermore, novel methods extending beyond traditional gain-based techniques are discussed, showcasing innovative approaches that further refine VR interactions. The practical implications of RDW in enhancing safety and reducing physical collisions in VR environments are underscored, alongside its potential to improve user experience by aligning virtual exploration more closely with natural human behavior patterns. Through a thorough review of existing literature and recent advancements, this survey provides a systematic understanding for researchers, developers, and industry professionals. It underscores the importance of RDW in the future of VR, emphasizing RDW's role in making VR more accessible and practical across various applications, from education and training to therapy and entertainment. The paper concludes with a forward-looking perspective on the continued evolution and potential of RDW in revolutionizing virtual reality experiences.
Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Visualization and Computer Graphics , 2010, 16(1): 17–27. DOI: 10.1109/TVCG.2009.62.
Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications , 2018, 38(2): 44–56. DOI: 10.1109/MCG.2018.111125628.
Hodgson E, Bachmann E. Comparing four approaches to generalized redirected walking: Simulation and live user data. IEEE Trans. Visualization and Computer Graphics , 2013, 19(4): 634–643. DOI: 10.1109/TVCG.2013.28.
Bachmann E R, Hodgson E, Hoffbauer C, Messinger J. Multi-user redirected walking and resetting using artificial potential fields. IEEE Trans. Visualization and Computer Graphics , 2019, 25(5): 2022–2031. DOI: 10.1109/TVCG.2019.2898764.
Williams N L, Bera A, Manocha D. ARC: Alignment-based redirection controller for redirected walking in complex environments. IEEE Trans. Visualization and Computer Graphics , 2021, 27(5): 2535–2544. DOI: 10.1109/TVCG.2021.3067781.
Zmuda M A, Wonser J L, Bachmann E R, Hodgson E. Optimizing constrained-environment redirected walking instructions using search techniques. IEEE Trans. Visualization and Computer Graphics , 2013, 19(11): 1872–1884. DOI: 10.1109/TVCG.2013.88.
Xu S Z, Liu J H, Wang M, Zhang F L, Zhang S H. Multi-user redirected walking in separate physical spaces for online VR scenarios. IEEE Trans. Visualization and Computer Graphics , 2024, 30(4): 1916–1926. DOI: 10.1109/TVCG.2023.3251648.
Hodgson E, Bachmann E, Waller D. Redirected walking to explore virtual environments: Assessing the potential for spatial interference. ACM Trans. Applied Perception (TAP) , 2011, 8(4): Article No. 22. DOI: 10.1145/2043603.2043604.
Bruder G, Lubos P, Steinicke F. Cognitive resource demands of redirected walking. IEEE Trans. Visualization and Computer Graphics , 2015, 21(4): 539–544. DOI: 10.1109/TVCG.2015.2391864.
Lappe M, Bremmer F, van den Berg A V. Perception of self-motion from visual flow. Trends in Cognitive Sciences , 1999, 3(9): 329–336. DOI: 10.1016/S1364-6613(99)01364-9.
Hülemeier A G, Lappe M. Visual perception of travel distance for self-motion through crowds. Journal of Vision , 2023, 23(4): Article No. 7. DOI: 10.1167/jov.23.4.7.
Hülemeier A G, Lappe M. Illusory percepts of curvilinear self-motion when moving through crowds. Journal of Vision , 2023, 23(14): Article No. 6. DOI: 10.1167/jov.23.14.6.
Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: Sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Visualization and Computer Graphics , 2017, 23(4): 1389–1398. DOI: 10.1109/TVCG.2017.2657220.
Mayor J, Raya L, Bayona S, Sanchez A. Multi-technique redirected walking method. IEEE Trans. Emerging Topics in Computing , 2022, 10(2): 997–1008. DOI: 10.1109/TETC.2021.3062285.
Xu S Z, Chen F X Y, Gong R, Zhang F L, Zhang S H. BiRD: Using bidirectional rotation gain differences to redirect users during back-and-forth head turns in walking. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2693–2702. DOI: 10.1109/TVCG.2024.3372094.
Dong T, Gao T, Dong Y, Wang L, Hu K, Fan J. FREE-RDW: A multi-user redirected walking method for supporting non-forward steps. IEEE Trans. Visualization and Computer Graphics , 2023, 29(5): 2315–2325. DOI: 10.1109/TVCG.2023.3247107.
Williams N L, Peck T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Trans. Visualization and Computer Graphics , 2019, 25(11): 3158–3168. DOI: 10.1109/TVCG.2019.2932213.
Bruder G, Interrante V, Phillips L, Steinicke F. Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Trans. Visualization and Computer Graphics , 2012, 18(4): 538–545. DOI: 10.1109/TVCG.2012.55.
Zhang J, Langbehn E, Krupke D, Katzakis N, Steinicke F. Detection thresholds for rotation and translation gains in 360° video-based telepresence systems. IEEE Trans. Visualization and Computer Graphics , 2018, 24(4): 1671–1680. DOI: 10.1109/TVCG.2018.2793679.
Kim D, Kim S, Shin J E, Yoon B, Kim J, Lee J, Woo W. The effects of spatial configuration on relative translation gain thresholds in redirected walking. Virtual Reality , 2023, 27(2): 1233–1250. DOI: 10.1007/s10055-022-00734-3.
Robb A, Kohm K, Porter J. Experience matters: Longitudinal changes in sensitivity to rotational gains in virtual reality. ACM Trans. Applied Perception , 2022, 19(4): 16. DOI: 10.1145/3560818.
Wang C, Zhang S H, Zhang Y, Zollmann S, Hu S M. On rotation gains within and beyond perceptual limitations for seated VR. IEEE Trans. Visualization and Computer Graphics , 2023, 29(7): 3380–3391. DOI: 10.1109/TVCG.2022.3159799.
Ogawa K, Fujita K, Sakamoto S, Takashima K, Kitamura Y. Exploring visual-auditory redirected walking using auditory cues in reality. IEEE Trans. Visualization and Computer Graphics , 2024, 30(8): 5782–5794. DOI: 10.1109/TVCG.2023.3309267.
Neth C T, Souman J L, Engel D, Kloos U, Bulthoff H H, Mohler B J. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Trans. Visualization and Computer Graphics , 2012, 18(7): 1041–1052. DOI: 10.1109/TVCG.2011.275.
Bölling L, Stein N, Steinicke F, Lappe M. Shrinking circles: Adaptation to increased curvature gain in redirected walking. IEEE Trans. Visualization and Computer Graphics , 2019, 25(5): 2032–2039. DOI: 10.1109/TVCG.2019.2899228.
Taylor M M, Creelman C D. PEST: Efficient estimates on probability functions. The Journal of the Acoustical Society of America , 1967, 41(4A): 782–787. DOI: 10.1121/1.1910407.
Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology , 1993, 3(3): 203–220. DOI: 10.1207/s15327108ijap0303_3.
Keshavarz B, Hecht H. Validating an efficient method to quantify motion sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society , 2011, 53(4): 415–426. DOI: 10.1177/0018720811403736.
Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology , 1988, 52: 139–183. DOI: 10.1016/S0166-4115(08)62386-9.
Kim H, Jeon S B, Lee I K. Locomotion techniques for dynamic environments: Effects on spatial knowledge and user experiences. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2184–2194. DOI: 10.1109/TVCG.2024.3372074.
Schubert T, Friedmann F, Regenbrecht H. The experience of presence: Factor analytic insights. Presence , 2001, 10(3): 266–281. DOI: 10.1162/105474601300343603.
Warren W H Jr, Kay B A, Zosh W D, Duchon A P, Sahuc S. Optic flow is used to control human walking. Nature Neuroscience , 2001, 4(2): 213–216. DOI: 10.1038/84054.
Rothacher Y, Nguyen A, Lenggenhager B, Kunz A, Brugger P. Visual capture of gait during redirected walking. Scientific Reports , 2018, 8(1): Article No. 17974. DOI: 10.1038/s41598-018-36035-6.
Bruder G, Steinicke F, Wieland P, Lappe M. Tuning self-motion perception in virtual reality with visual illusions. IEEE Trans. Visualization and Computer Graphics , 2012, 18(7): 1068–1078. DOI: 10.1109/TVCG.2011.274.
Weller R, Brennecke B, Zachmann G. Redirected walking in virtual reality with auditory step feedback. The Visual Computer , 2022, 38(9): 3475–3486. DOI: 10.1007/S00371-022-02565-4.
Lee J, Hwang S, Ataya A, Kim S. Effect of optical flow and user VR familiarity on curvature gain thresholds for redirected walking. Virtual Reality , 2024, 28(1): Article No. 35. DOI: 10.1007/s10055-023-00935-4.
Sakono H, Matsumoto K, Narumi T, Kuzuoka H. Redirected walking using continuous curvature manipulation. IEEE Trans. Visualization and Computer Graphics , 2021, 27(11): 4278–4288. DOI: 10.1109/TVCG.2021.3106501.
Schmelter T, Hernadi L, Störmer M A, Steinicke F, Hildebrand K. Interaction based redirected walking. Proceedings of the ACM on Computer Graphics and Interactive Techniques , 2021, 4(1): Article No. 9. DOI: 10.1145/3451264.
Dong Z C, Fu X M, Yang Z, Liu L. Redirected smooth mappings for multiuser real walking in virtual reality. ACM Trans. Graphics (TOG) , 2019, 38(5): Article No. 149. DOI: 10.1145/3345554.
Li H, Fan L. Mapping various large virtual spaces to small real spaces: A novel redirected walking method for immersive VR navigation. IEEE Access , 2020, 8: 180210–180221. DOI: 10.1109/ACCESS.2020.3027985.
Strauss R R, Ramanujan R, Becker A, Peck T C. A steering algorithm for redirected walking using reinforcement learning. IEEE Trans. Visualization and Computer Graphics , 2020, 26(5): 1955–1963. DOI: 10.1109/TVCG.2020.2973060.
Williams N L, Bera A, Manocha D. Redirected walking in static and dynamic scenes using visibility polygons. IEEE Trans. Visualization and Computer Graphics , 2021, 27(11): 4267–4277. DOI: 10.1109/TVCG.2021.3106432.
Azmandian M, Yahata R, Grechkin T, Rosenberg E S. Adaptive redirection: A context-aware redirected walking meta-strategy. IEEE Trans. Visualization and Computer Graphics , 2022, 28(5): 2277–2287. DOI: 10.1109/TVCG.2022.3150500.
Wang M, Chen Z Y, Cai W C, Steinicke F. Transferable virtual-physical environmental alignment with redirected walking. IEEE Trans. Visualization and Computer Graphics , 2024, 30(3): 1696–1709. DOI: 10.1109/TVCG. 2022.3224073.
Xu S Z, Liu T Q, Liu J H, Zollmann S, Zhang S H. Making resets away from targets: POI aware redirected walking. IEEE Trans. Visualization and Computer Graphics , 2022, 28(11): 3778–3787. DOI: 10.1109/TVCG.2022.3203095.
Wu X L, Hung H C, Babu S V, Chuang J H. Novel design and evaluation of redirection controllers using optimized alignment and artificial potential field. IEEE Trans. Visualization and Computer Graphics , 2023, 29(11): 4556–4566. DOI: 10.1109/TVCG.2023.3320208.
Chen J J, Hung H C, Sun Y R, Chuang J H. APF-S2T: Steering to target redirection walking based on artificial potential fields. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2464–2473. DOI: 10.1109/TVCG.2024.3372052.
Lee H J, Jeon S B, Cho Y H, Lee I K. Redirection strategy switching: Selective redirection controller for dynamic environment adaptation. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2474–2484. DOI: 10.1109/TVCG.2024.3372056.
Li Y J, Steinicke F, Wang M. A comprehensive review of redirected walking techniques: Taxonomy, methods, and future directions. Journal of Computer Science and Technology , 2022, 37(3): 561–583. DOI: 10.1007/s11390-022-2266-7.
Nitzsche N, Hanebeck U D, Schmidt G. Motion compression for telepresent walking in large target environments. Presence , 2004, 13(1): 44–60. DOI: 10.1162/105474604774048225.
Su J. Motion compression for telepresence locomotion. Presence: Teleoperators and Virtual Environments , 2007, 16(4): 385–398. DOI: 10.1162/pres.16.4.385.
Congdon B J, Steed A. Monte-Carlo redirected walking: Gain selection through simulated walks. IEEE Trans. Visualization and Computer Graphics , 2023, 29(5): 2637–2646. DOI: 10.1109/TVCG.2023.3247093.
Jeon S B, Kwon S U, Hwang J Y, Cho Y H, Kim H, Park J, Lee I K. Dynamic optimal space partitioning for redirected walking in multi-user environment. ACM Trans. Graphics (TOG) , 2022, 41(4): Article No. 90. DOI: 10.1145/3528223.3530113.
Teixeira J, Miellet S, Palmisano S. Effects of vection type and postural instability on cybersickness. Virtual Reality , 2024, 28(2): Article No. 82. DOI: 10.1007/s10055-024-00969-2.
Rahimi K, Banigan C, Ragan E D. Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. IEEE Trans. Visualization and Computer Graphics , 2020, 26(6): 2273–2287. DOI: 10.1109/TVCG.2018.2884468.
Zhang S H, Chen C, Zollmann S. One-step out-of-place resetting for redirected walking in VR. IEEE Trans. Visualization and Computer Graphics , 2023, 29(7): 3327–3339. DOI: 10.1109/TVCG.2022.3158609.
Zhang S H, Chen C H, Zheng F, Yang Y L, Hu S M. Adaptive optimization algorithm for resetting techniques in obstacle-ridden environments. IEEE Trans. Visualization and Computer Graphics , 2023, 29(4): 2080–2092. DOI: 10.1109/TVCG.2021.3139990.
Bidder II W H, Tomlinson A. A comparison of saccadic and blink suppression in normal observers. Vision Research , 1997, 37(22): 3171–3179. DOI: 10.1016/S0042-6989(97)00110-7.
Bolte B, Lappe M. Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression. IEEE Trans. Visualization and Computer Graphics , 2015, 21(4): 545–552. DOI: 10.1109/TVCG.2015.2391851.
Langbehn E, Steinicke F, Lappe M, Welch G F, Bruder G. In the blink of an eye: Leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality. ACM Trans. Graphics (TOG) , 2018, 37(4): Article No. 66. DOI: 10.1145/3197517.3201335.
Sun Q, Patney A, Wei L Y, Shapira O, Lu J, Asente P, Zhu S, McGuire M, Luebke D, Kaufman A. Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Trans. Graphics (TOG) , 2018, 37(4): 67. DOI: 10.1145/3197517.3201294.
Suma E A, Lipps Z, Finkelstein S, Krum D M, Bolas M. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Visualization and Computer Graphics , 2012, 18(4): 555–564. DOI: 10.1109/TVCG.2012.47.
Simons D J, Rensink R A. Change blindness: Past, present, and future. Trends in Cognitive Sciences , 2005, 9(1): 16–20. DOI: 10.1016/j.tics.2004.11.006.
Xu S Z, Huang K, Fan C W, Zhang S H. Spatial contraction based on velocity variation for natural walking in virtual reality. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2444–2453. DOI: 10.1109/TVCG.2024.3372109.
Sun Q, Wei L Y, Kaufman A. Mapping virtual and physical reality. ACM Trans. Graphics (TOG) , 2016, 35(4): Article No. 64. DOI: 10.1145/2897824.2925883.
Dong Z C, Fu X M, Zhang C, Wu K, Liu L. Smooth assembled mappings for large-scale real walking. ACM Trans. Graphics (TOG) , 2017, 36(6): Article No. 211. DOI: 10.1145/3130800.3130893.
Dong Z C, Wu W, Xu Z, Sun Q, Yuan G, Liu L, Fu X M. Tailored reality: Perception-aware scene restructuring for adaptive VR navigation. ACM Trans. Graphics (TOG) , 2021, 40(5): Article No. 193. DOI: 10.1145/3470847.
Hoshikawa Y, Fujita K, Takashima K, Fjeld M, Kitamura Y. RedirectedDoors+: Door-opening redirection with dynamic haptics in room-scale VR. IEEE Trans. Visualization and Computer Graphics , 2024, 30(5): 2276–2286. DOI: 10.1109/TVCG.2024.3372105.
Azmandian M, Yahata R, Grechkin T, Thomas J, Rosenberg E S. Validating simulation-based evaluation of redirected walking systems. IEEE Trans. Visualization and Computer Graphics , 2022, 28(5): 2288–2298. DOI: 10.1109/TVCG.2022.3150466.
Prinz L M, Mathew T, Weyers B. A systematic literature review of virtual reality locomotion taxonomies. IEEE Trans. Visualization and Computer Graphics , 2023, 29(12): 5208–5223. DOI: 10.1109/TVCG.2022.3206915.