AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Opportunities for reversible chillers in office buildings in Europe

Pascal Stabat( )Dominique Marchio
Mines ParisTech, CEP — Centre énergétique et procédés, 60 boulevard Saint Michel, 75272 Paris cedex 06, France
Show Author Information

Abstract

Europe with more than 600 millions of square meters of air-conditioned office buildings offers an opportunity to save energy and reduce CO2 emissions by reconverting chillers into reversible heat pumps in office buildings. One of the questions asked in the framework of the IEA ECBCS Annex 48 is how to assess the energy saving potential and how to identify the most interesting building cases. The methodology proposed here is based on the simulation of office buildings representative of the building stock. The energy consumption has been simulated for different office building types in five European climatic zones on the one hand with boilers for heating and chillers for cooling, and on the other hand with reversible chillers plus back-up boilers. The results of the simulations in terms of energy consumption allow us to assess the primary energy savings and CO2 emission reduction in Europe by reconverting chillers into reversible heat pumps. The results show that the potential of annual primary energy savings and annual CO2 emission reduction are about 8 TWhPE and 3 millions of tons of CO2 in Europe-15. Even if the temperature level in terminal units can be solved using the cooling coil instead of the heating coil, a back up boiler turns generally out to be required for the coldest days in the year or when simultaneous heating and cooling demands occur.

References

 
J Adnot (2003). Energy Efficiency and Certification of Central Air Conditioners Study (EECCAC) for the D.G. Transportation-Energy (DRGTEN) of the Commission of the E.U.
 
JM Alessandrini, E Fleury, S Filfli, D Marchio (2006). Impact de la gestion de l'éclairage et des protections solaires sur la consommation d'énergie de bâtiments de bureaux climatisés. In: Climamed, Lyon, France. (in French)
 
CA Balaras (2006). EPA-NR Survey: National context and need for instruments WP1 final report, Energy Performance Assessment for Existing Non Residential buildings, NOA, Athens, Greece, available on http://www.epa-nr.org/151.html.
 
S Bertagnolio, M Caciolo, P Stabat (2008). Review of heat recovery and heat pumping solutions, deliverable 1.4, report of subtask 1 of IEA-ECBCS Annex 48, http://www.ecbcs-48.org.
 
A Bohler, R Casari, E Fleury, D Marchio, JR Millet, O Morisot (2000). Consoclim—Ensemble coordonné d'algorithmes pour le calcul des consommations d'énergie des bâtiment. Cahiers du CSTB, Cahier 3187, pp. 1-12. (in French)
 
EN 13779 (2007). Ventilation for non-residential buildings—performance requirements for ventilation and room-conditioning systems. Standard NF EN 13779.
 
EUROVENT (2007). Eurovent certification programme, http://www.eurovent-certification.com/, Accessed in 2007.
 
S Filfli (2006). Optimisation bâtiment/système pour minimiser les consommations dues à la climatisation. PhD Dissertation, Ecole des Mines de Paris, France.
 
R Kemna, M Van Elburg, W Li, Holsteijn Van (2007). Eco-design of boilers, Task 2, Market Analysis, http://www.ecoboiler.org/, Delft, 30 September 2007.
 
JM Jancovici (2007). Guide des facteurs d'émissions—calcul des facteurs d'émissions et sources bibliographiques utilisées, Bilan Carbone version 5.0, ADEME Janvier 2007. (in French)
 
MJ Limb (2001). A review of International ventilation, airtightness, thermal insulation and indoor air quality criteria. Document IC-TN55, AIVC.
 
RT (2005). Réglementation thermique 2005, CSTB, France. (in French)
 
O Morisot, D Marchio, P Stabat (2002). Simplified model for the operation of chiller water cooling coils under nonnominal conditions. HVAC & R Research, 8(2): 135-168.
 
L Pérez-Lombard, J Ortiz, C Pout (2007). A review on buildings energy consumption information. Energy and Buildings, 40: 394-398.
 
PrEN 15603 (2007). Energy performance of buildings—Overall energy use, CO2 emissions and definition of energy ratings. CEN/TC's 89 and 228. Standard Project EN 15603.
 
P Riviere (2004). Performances saisonnières des groupes de production d'eau glacée. Ph.D Dissertation, Ecole des Mines de Paris, France. (in French)
 
P Stabat (2008). Analysis of heating and cooling in the purpose of assessing the reversibility and heat recovery potentials, report of subtask 1 of IEA-ECBCS Annex 48, to be published online on http://www.ecbcs-48.org.
 
JL Threlkeld (1970). Thermal Environmental Engineering, 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall.
 
P Wouters, P Barles, Å Blomsterberg, P Bulsing, W De Gids, C Delmotte, JC Faÿsse, C Filleux, P Hardegger, V Leal, E Maldonado, K Pennycook (2001). TIP-VENT: Towards Improved Performances of Mechanical Ventilation Systems. EC Joule TIP-Vent project.
Building Simulation
Pages 95-108
Cite this article:
Stabat P, Marchio D. Opportunities for reversible chillers in office buildings in Europe. Building Simulation, 2009, 2(2): 95-108. https://doi.org/10.1007/s12273-009-9207-z

576

Views

3

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 August 2008
Revised: 02 March 2009
Accepted: 05 March 2009
Published: 01 April 2009
© Tsinghua University Press and Springer-Verlag 2009
Return